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2 USB subsystem in HelenOS

Chapter 1

Introduction to HelenOS USB subsystem

This manual describes support for USB devices in HelenOS operating system. The manual is intended
primarily for developers of device drivers and host controller drivers. However, even end users of HelenOS
or authors of end-user applications interacting with USB driver can find interesting information here.

HelenOS is a microkernel operating system where most of the functionality is provided by userspace tasks
rather than system calls. This includes file system service, networking and also device drivers.

USB is a standard for communication between host computers and computer peripherals. The advantage
of USB over other kinds of connection between a computer and a peripheral is its flexibility. USB supports
plugging and unplugging of devices without need to turn off any of the components. The data flow model
is designed to accommodate together peripherals with different transfer characteristics.

Adding support for USB devices to HelenOS shall improve the usability of the system in general even if
the support concerns only USB 1.1 and the only peripheral drivers are for keyboards and mice.

Also, the support can be thought of as a proof of concept. Proof that it is possible to write drivers completely
in userspace with only minimal support of kernel. Actually, changes introduced by the USB team to kernel
were only cosmetic and no huge changes were needed. It also proves that userspace drivers can be divided
into relatively high number of standalone tasks (processes) that are relatively simple, thus making the system
more robust. Technically, the support can be also viewed as a demonstration that the new framework for
writing device drivers is well designed and works. The framework was added to HelenOS recently (state in
the time of writing this manual — first half of 2011).

1.1 USB support in other operating systems

Major operating systems like MS Windows, Linux distributions, UNIXes, BSDs and Solaris include full
support for USB 1.1 and 2.0 as well as drivers for various host controllers. This is not surprising as some
OS vendors contributed to USB development, and the specification has been available for some time.

Among experimental and academic OSes like Haiku, GNU Hurd and Minix, only Haiku includes full USB
support. Neither of the two micro-kernel based systems (Hurd, Minix) include USB support, this makes
HelenOS’s USB implementation a trailblazer.
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Chapter 2

HelenOS overview

This chapter is a brief overview of HelenOS operating system. It cannot and does not want to replace
HelenOS design documentation1 and information spread on community wiki2 but it provides a summary
of what the reader shall know about HelenOS prior reading this documentation. For some chapters, no or
little knowledge of HelenOS is required but if you plan to write your own drivers, you will need to know
something about HelenOS.

2.1 In lieu of introduction

HelenOS was started as a student software project in 2004 with the aim to build a portable microkernel
operating system. The main goal was to create lightweight kernel supporting several different architectures
with clean design and implementation.

Since then HelenOS has been used as a base platform for several bachelor and diploma theses. Apart from
its microkernel nature the reason for using HelenOS for further development and research is its clean design
and small size. At the beginning of 2011, over 20 students were participating on HelenOS as a part of their
theses or other projects.

From the beginning, HelenOS was developed with portability in mind. Although the number of supported
architectures is high (AMD64/EM64T (x86-64), ARM, IA-32, IA-64 (Itanium), 32-bit MIPS, 32-bit Pow-
erPC and SPARC V9) the kernel is still relatively small and userspace contains only minimum of architec-
ture specific code. USB was tested and developed on IA-32 and AMD64 architectures but the userspace
library and kernel layer hides the architecture dependent ‘stuff’ and porting USB support to other architec-
tures shall not create any unexpected problems.

The microkernel nature of HelenOS means that vital services the operating system provides are not part of
kernel but are rather provided by userspace tasks. There are separate tasks for handling file system service,
for networking or for drivers management. Most of these services are used transparently. For example, the
fact that call to printf is actually translated to a call to virtual file system service from where it goes to
console service that actually prints the string is hidden from the programmer and the semantics of printf
does not differ at all from a monolithic OS. Knowledge of these services is not needed for understanding
and developing USB drivers. There are exceptions, though.

First one is devmap— device mapper — service that creates representation of hardware and virtual devices
in a file system. It takes care of the /dev directory that is somehow similar to the directory found in Unix
systems.

1http://www.helenos.org/documentation
2http://trac.helenos.org/

http://www.helenos.org/documentation
http://trac.helenos.org/
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The other one is devman— device manager — service that controls startup and communication between
device drivers. Understanding this service is vital for writing device drivers for HelenOS and will be
described in following section in more detail.

However, before describing it, several notes have to be made about inter process communication in HelenOS
in general.

2.2 HelenOS IPC: phones and fibrils

Communication between tasks is an important part of any general purpose operating system. And it is a vital
part of a microkernel design. This section will be an overview of inter-process communication in HelenOS.
Please note, that the term inter-process communication — IPC — is used even in microkernel environment
where processes are usually called tasks.

HelenOS is based on asynchronous IPC. That means that when an application sends a message, the kernel
takes care of the delivery but does not block the sender and the sender retrieves the answer by another
request to the kernel.

The advantage of asynchronous communication is that the task can do something useful when waiting for
the answer instead of being blocked in the kernel during some IPC system call. Also, it is easier to create
an illusion of synchronous processing when asynchronous API is available than vice versa.

The disadvantage is that programming in an asynchronous way is more complicated. For servers accepting
connections from more clients, asynchronous processing usually ends with registering of callbacks when
some message is delivered and the code gets complicated.

In HelenOS, this disadvantage was bypassed by introduction of fibrils and asynchronous framework.

A fibril is a userspace cooperatively scheduled thread. Kernel has no knowledge of a fibril and the fibrils
are backed by a real (i.e. kernel) thread. The scheduling of fibrils is cooperative and happens usually when
asynchronous IPC operation take place.

The asynchronous framework is a set of C functions (part of HelenOS libc) that makes an illusion of
synchronous IPC in order to allow simpler implementations of services. The main idea is simple: IPC will
be asynchronous and each client connected to the service will be handled in a separate fibril where the
communication would look like a synchronous one. The synchronous illusion is created by the framework.
The framework keeps track of the fibrils and does the callback registration for them. When a fibril executes
a pseudo-synchronous operation, the framework uses the asynchronous version of the operation and then
schedules another fibril. When the reply arrives, the framework schedules the original fibril and for the
programmer it looks like a return from a function.

This way the programming of services looks more natural and the asynchronous advantages are not lost. It
also makes the kernel simpler. The same thing can be achieved using real (kernel backed) threads but then
the kernel would need to keep track to which thread the message belongs. Now, the message is addressed
to the whole task and the framework ensures that it is delivered to the right fibril.

So far, IPC was described in general terms such as message or response. HelenOS uses its own terms for
some actions and it is necessary to know them in order to understand API documentation.

Probably the most confusing name is phone. A phone represents an open connection to some other task.
Unlike in real life, these phones are unidirectional and only one side can initiate a message sending.

The message sent over the phone is called a call. The receiving party of the call eventually answers it by
sending back a reply. A typical call consists of 5 integer arguments where the first argument is a method
number describing action to be taken by the receiving party. An answer call also takes such arguments but
the first argument is treated as a status code whether the action was successful. There are several special
calls that are intercepted and preprocessed by the kernel. One of them is a hangup call that terminates the
connection. Another group of such calls are data transfer calls that are used to transfer larger amount of
data. Using a special call it is possible to create a callback connection that reverses the direction of the
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phone. This call reverses the normal connection scheme ‘I want to connect to you’ to ‘Do you want to
connect to me?’.

Last two specials calls are a duplication request and a forwarding one. The first one duplicates already
opened connection which is useful for example to allow parallel IPC between two tasks. The second one
forwards an incoming call to another task. This functionality is crucial for naming service to forward
connections to respective services.

When a task starts, it has only one opened phone connected to a naming service. This server remembers
connection to other services and by duplicating and forwarding the connection allows other tasks to connect
to them.

This scheme means that kernel itself has to know only about the naming service. Each task will got the
phone to it and services will make a callback connection to register themselves for other tasks while clients
will ask the naming service to be forwarded to other services.

2.3 Device driver framework in HelenOS

Drivers in HelenOS are implemented as standalone tasks in userspace that require only minimal kernel
intervention. This is in great contrast to monolithic kernels where all drivers are part of kernel and are
living in the same address space. In HelenOS, each driver is a separate task that communicates with others
through IPC. It seeks kernel assistance only for privileged operations, such as interrupt handling.

Although the idea of having all drivers in userspace exists since the beginning of HelenOS some drivers are
actually part of the kernel. Some are there because they are needed by kernel. For example, a driver for
AT keyboard is needed for kernel console. Some are vital for the boot phase and their move into userspace
would be too complicated (e.g. ACPI reading). And finally, it is still possible to find traces from the first
versions of HelenOS when total separation of drivers (i.e. their move into userspace) was not possible (e.g.
because it would complicate development too much).

The framework itself consists of two parts. The first part is a the device manager service that is responsible
for starting the drivers and for controlling their life-cycle. The other part is a libdrv library that is used
by the drivers and that encapsulates communication with device manager.

Each driver is a standalone executable program that controls all instances of a certain device type. For
example, when there are two USB keyboards attached to the computer, they will be both controlled by the
same task (i.e. the same running instance of an executable file).

The device is attached to the driver by the device manager when some bus driver detects new device and
devman decides that the driver is suitable for controlling the new device.

1. When the device is detected, the bus driver queries it to get as accurate description of the device as
possible. The description should typically involve manufacturer identification and device kind (e.g.
keyboard, VGA-compatible card or printer). From this description the bus driver creates match ids.
A match id is a string with description and a positive integer — score — telling how accurate is the
description. For example, match id with manufacturer would have higher score than match id with
generic device kind because the former is more accurate.
Format of a match id is not strictly set but most of the time, URI-like format is used. For example,
PCI-connected devices uses format pci/ven=106b&dev=003f where 106b is vendor id and
003f is device id.

2. These match ids are sent to devman together with message that new device has been discovered.

3. devman then goes through the list of all of its drivers and decides which is the most suitable one.
Each driver also has a list of match ids describing which devices it is capable of controlling. The
match ids are then compared for equality and highest score determines which driver will control the
device.
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4. Once devman knows which driver will take care of the device, it informs the driver about it. If the
driver was not yet launched, devman takes care of starting it.

5. At the driver side, the incoming message is translated into a callback defined by the driver author.
This callback is usually called add_device. In this function, the driver shall initialize the device
and check that the device is usable. After initialization, it informs devman that it accepted the device.

The description so far missed any information on how applications communicate with the drivers or vice
versa. This is done through so called interfaces. For an application, the interface of the driver describes its
capabilities and way how to query the device. From the driver point of view, interface is a set of callbacks
the driver must implement.

Obviously, there must be IPC behind these interfaces. The application talks with the driver through IPC
that is wrapped on both sides into higher-level functions. For applications, these functions are sometimes
part of libc or specialized libraries. On the other side of the IPC, drivers use libdrv that wraps the call
reception into callbacks to C functions. Nevertheless, if you are planning to add you own interface, you will
need to implement the IPC layer by yourself because HelenOS misses any automated stub generation.

2.4 Where to go next

This chapter was a mere overview or a refreshment course if you wish. If you feel uncertain in some aspects
it is recommended to learn more about HelenOS prior trying to implement USB drivers.

Below is a list of recommended sources

• HelenOS wiki3 is full of materials

• HelenOS sources4

• master thesis of Lenka Trochtová about device driver framework5 (the API evolved since the defense of
the thesis but the principles remained the same)

3http://trac.helenos.org
4http://www.helenos.org/sources
5http://www.helenos.org/doc/theses/lt-thesis.pdf

http://trac.helenos.org
http://www.helenos.org/sources
http://www.helenos.org/doc/theses/lt-thesis.pdf
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Chapter 3

USB overview

This chapter provides a brief overview of the USB architecture. It does not aim to be a drop-in replacement
for Universal Serial Bus specifications. It can be also viewed as a summary of what the reader of this
document must already know. If you are new to USB, you can use this chapter as a starting point for further
reading.

3.1 The ‘big’ picture

USB is a technology used for connecting peripherals to host computer. Its main advantages are simplicity
of usage for end users, pretty good scalability (in terms of number of simultaneously attached devices) and
a choice of possible transfer types that accommodate requests of diametrically different devices. The USB
defines the following aspects (most of them will be mentioned later in this chapter):

• bus physical topology

• physical interface — both mechanical (plugs) and electrical

• power management

• configuration of attached devices

• querying attached devices for supported functions

• low-level data protocol used on the bus

• high-level data protocol — transfer types

The following sections will describe parts that are most important for authors of device drivers. They will
not include description of low-level aspects, such as electrical current settings or sizes of mechanical plugs.

The acronym USB is used in two slightly different meanings in the following text. First, as a common prefix
(e.g. USB device), second in its original meaning, describing the bus itself (when the word ‘bus’ is used, it
will always refer to the Universal Serial Bus unless explicitly stated otherwise).

3.2 Bus topology

USB uses a tree-like physical bus topology. In the root of the tree there is the host computer with a hardware
chip — host controller — controlling all communication over the bus. All communication requests of device
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drivers are directed to the driver of the host controller that schedules them and then sends them to the USB
‘wire’. The host controller provides several ports to which devices are connected.

USB devices come in two flavors. First, there are functions — these provide actual functionality and create
leaf nodes in the bus topology. Example of a USB function is a printer or a keyboard. The other kind are
hubs that create branches on the bus and to which other devices might be connected.

Hubs provide means to attach more devices to the same bus. The attachment place is called a port (typical
hubs for PCs has about four ports). Actually, each hub has two different kinds of ports. First, there is the
upstream port through which the hub is connected to a parent device (i.e. the predecessor in the tree) and
then there are several downstream ports through which other devices are connected. The host controller
must always provide at least one port to allow device attachment. Typically, the host controller provides its
own hub, called root hub.

Although physically, the topology is a tree rooted in the host controller, addressing of the devices uses a flat
structure (see figure below [p. 8]) and under certain abstraction, hubs can be viewed as transparent splitters
that add no logic to the bus.

Figure 3.1: Logical USB topology

Each device connected to a host controller receives a unique address (a positive integer) and reacts only to
communication that is targeted to it. Before the device receives this address, it listens on the default address
(number zero). To prevent situation when more devices would listen on the default address simultaneously,
each hub must provide means to disable communication forwarding to certain ports (USB terminology says
that hub does not signal on given downstream port).

3.3 Device configurations, interfaces and endpoints

USB was designed to be as flexible regarding device configurations as possible. Because of this, each device
can provide several configurations. Each configuration may provide completely different sets of features
but practically almost all common USB devices have only single configuration.

Each configuration can provide one or more interfaces. The interface provides the actual functionality of
the device. For example, USB printer provides the printing as an interface. Some devices may provide
more than one interface. For example, a digital camera may provide an interface for direct communication
with the camera (usually via vendor drivers) and, as a fallback, a mass-storage interface that can be used to
download photos when the specialized drivers are not available.

Each interface can have several alternate settings than change device capabilities at interface level. For
example, network card may offer several alternate settings using different sizes of data packets.

The actual communication with the device happens through endpoints. Each endpoint belongs to a single
interface and represents a communication ‘gate’ to the device — USB uses the term pipe to describe an
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abstract connection between device driver on one side and the device on the other one. Endpoints are
unidirectional (either in or out) and have several attributes that must be obeyed by the driver.

A special endpoint — control endpoint zero (sometimes default control endpoint) — is present on each de-
vice and is used for configuration purposes and for standard requests (e.g. for querying the device for
generic capabilities).

3.4 Bus protocol and transfer types

The USB defines how data that are supposed to be sent to (or received from) a device shall be encoded and
treated prior to their sending over the wire. This overview skips the ‘electrical’ aspect of the communication
and starts with abstraction that the host controller has means to send a stream of bytes to the wire.

Communication over the bus uses data packets that encapsulates the actual payload and some service data.
The service data include target address, endpoint number, packet type and data needed for packet integrity
checks.

Before moving on to describing packet types, it is necessary to mention transfer types. In order to allow
devices with different transfer requirements (e.g. web camera that supplies a continuous stream of data vs.
keyboard with few bytes several times minute) transfers over the bus happen in four different types.

Control transfers They are used for device configuration and for manipulating the state of the device.

Interrupt transfers These are intended for small and infrequent data where minimizing latency is the
primary goal. Typical devices using such transfer type are all HID devices.

Bulk transfers Bulk transfers are used for sending large chunks of data over the bus when the require-
ments are to have undamaged data and even a bigger delay is acceptable. Typical devices include
printers or scanners.

Isochronous transfers Unlike bulk transfers, where data integrity is a priority, isochronous transfers ig-
nore data checking and priorities are put on quick delivery (policy is that delayed data are worse than
damaged ones). Multimedia devices such as web-cameras or wireless controllers use this transfer
type.

When a device driver wants to send data to the device or accept some data from the device (the device
cannot initiate the transfer under any conditions), it gives the payload to the host controller together with
information about target device (address) and endpoint. It must also provide information about transfer
type and data direction. The host controller then encapsulates these information into two packets. The
first packet informs about data direction while the other transfers the actual data. For incoming transfers, it
actually reserves bandwidth to which the device can send the data.

This protocol is roughly the same for bulk, interrupt and isochronous transfers. Control transfers are a bit
different because they have a special preambule — a setup packet. The setup packet contains commands
that might change the device state and this packet might be optionally followed by a data phase. Notice
that control transfers are the only ones that are actually bidirectional (because the setup packet is always
outgoing, while the data phase could be either in or out).

3.5 Device descriptors and device classes

In previous sections querying USB device for its capabilities was mentioned. This sections will describe
this querying in more detail.

Each USB device must provide several data blocks, called descriptors, describing its configuration and
capabilities. Some descriptors are device dependent while others are generic for any USB device.
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The roughest description of a device is provided in a device descriptor. It holds information about device
vendor, device class (see below), number of possible configurations and several other details.

Each configuration is then described by a configuration descriptor. This descriptor also contains the number
of interfaces the configuration provides. Each interface is then described by an interface descriptor. The
interface descriptor specifies to which class the interface belongs and how many endpoints it specifies.
Unsurprisingly, each endpoint is described by an endpoint descriptor. This descriptor defines attributes of
the endpoint — data direction, transfer type and endpoint number1.

The descriptors can be viewed as a tree, where device descriptor is the root node that has several descendants
— configurations. Each configuration then groups interfaces and endpoint descriptors are leaves. Device
may provide its own descriptors (e.g. vendor specific ones) that may stand aside of this tree or be part of it
(then they are typically inserted somewhere between interfaces or endpoints).

Although logically the descriptors form a tree, the device usually returns them in a serialized manner. For
example, interface and endpoint descriptors can be retrieved only as a part of a configuration descriptor they
belong to. The ordering in the serialized form implies the logical tree it represents. The USB descriptor
tree [p. 10] figure shows the logical descriptor tree, circled numbers next to items of configuration subtree
denote ordering in the serialized descriptor.

device

configuration 0 ©1

interface 0 ©2

endpoint 1 ©3 endpoint 2 ©4

interface 1 ©5

HID ©6 endpoint 3 ©7

configuration 1

interface 0

endpoint 1 endpoint 2

Figure 3.2: USB descriptor tree

USB was designed with flexibility of offered functionality in mind but to prevent total chaos, devices (or
rather their functionality) were divided by common attributes into so called device classes. Each class deals
with devices of certain kind, e.g. HID devices, printers, scanners, audio or a special vendor class for any
device that would not fit into any other one. Some classes define subclasses for fine-grained resolution (e.g.
HID class offers subclass for keyboards and mice).

The class is reported as a part of device and interface descriptor. That is because single physical device may
provide functionality of several classes simultaneously, depending which interface the software communi-
cates with. In such cases the class reported through the device descriptor is a special value with meaning
‘no class, see interface’.

3.6 Bus enumeration

USB was designed with possibility of hot-plugging and thus it has to have well defined actions when a new
device is added. The following is a simplified sequence of what all the involved drivers and devices must
go through. The setup is that new device is attached to some hub, that is already initialized and configured.

1. The hub (the hardware) detects change on one of its ports.

1When you write a device driver, you ought to know what endpoints the device shall have. The endpoint descriptor is then used
to merely map driver expectations to correct endpoint number.
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2. The hub waits some time to allow electrical current stabilization.

3. The hub informs the driver that a change occurred.

4. The hub driver queries the hub for exact kind of change (whether device was added or removed, etc.).

5. The hub driver requests reservation of default address (to prevent having more devices listening on
the same address).

6. The hub driver tells the hub to enable the port.

7. The port is enabled (i. e. signaling is open), the driver then must wait again for stabilization of
currents.

8. The driver queries the device for its device descriptor and assigns a new address to it.

9. The driver can release the reservation of the default address.

10. Based on the values of device descriptor, proper driver for the new device is found and started.

The new driver is then told the address of the device and it is up to it to configure and finish the initialization
of the device.

As stated above, the sequence is simplified and due to errors in devices (not all USB devices obey the
specification exactly) some steps (e.g. setting new address) have to be tried several times or in specific
ordering.

3.7 USB communication

3.7.1 Packets, transactions, transfers

3.7.1.1 Packets

Communication on USB bus is packet oriented. Every piece of information sent to device or host is trans-
lated into packet form before it reaches the bus. Packet formats are described in USB Specification2, part
8.4.

3.7.1.2 Transactions

However, packet level is not accessible to the software and drivers are not able to sent separate packets. The
smallest communication entity available is called a transaction. There are five (more precisely seven) types
of transactions available:

• setup transaction

• data IN transaction (DATA0 or DATA1)

• data OUT transaction (DATA0 or DATA1)

• isochronous data IN transaction

• isochronous data OUT transaction
2 http://esd.cs.ucr.edu/webres/usb11.pdf

http://esd.cs.ucr.edu/webres/usb11.pdf
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Every transaction consists of several packets. Usually it is a token packet, a data packet (might be DATA0
or DATA1), and a handshake packet. Isochronous transactions do not support handshake an thus consist of
only two packets.

HC driver should alternate DATA0/1 transactions to provide some level of data sequence synchronization.
This so called Data toggle protocol is described in USB specification, part 8.6.

Isochronous transactions do not support toggle synchronization and USB host should only use DATA0
packets, but it must accept both DATA0 and DATA1 in isochronous data IN transactions.

3.7.1.3 Transfers

Requests handled by host controller drivers are called transfers. One transfer usually corresponds to one
command to the device. Transfers may consists of several transactions. USB specification distinguishes
four types of transfers:

• Control transfers. These consist of three stages:

– SETUP stage: uses setup transactions, identifies command to the device, data packet is always DATA0
and 8 bytes long.

– DATA stage(optional): uses alternating data IN (DATA1/0) or alternating data OUT (DATA1/0) trans-
actions. Stage direction (IN/OUT) and its presence depends on the command sent in setup stage

– STATUS stage: uses one data IN or data OUT transaction (always DATA1). Direction used in STATUS
stage is opposite to that in DATA stage. If data stage was not present direction of STATUS stage is IN.
Control transfers must complete all stages without being interrupted by another control transfer to the
same endpoint. If two or more control transfers interleave, it will result in failure of the interrupted
transfers.

• Bulk transfers. Bulk transfers use data IN or data OUT transactions to move data. Toggle synchronization
is maintained by alternating DATA0/1.

• Interrupt transfers. Interrupt transfers are similar to bulk transfers but usually carry smaller amounts of
data. They are considered periodic transfers and can specify time interval of repetitions.

• Isochronous transfers. Isochronous transfers use isochronous data IN and isochronous data OUT trans-
actions. These are also considered periodic transfers but the time interval must be 1ms.

3.7.1.4 Bus access constraints

Different transfer types have different bus access limitations. Periodic transfers (isochronous and interrupt),
are limited to 90% of the available bandwidth. Interrupt and isochronous communication happens regu-
larly (hence periodic) and maximum required bandwidth has to be reserved in advance. Failure to reserve
bandwidth should result in driver/device initialization failure.

At least 10% of bandwidth has to be available for control transfers. It might be less if there are not enough
control transfers pending.

Bandwidth, that is left unused after periodic and control transfers requests were satisfied, can be used by
bulk transfers. Bulk transfer work in best effort mode and if there is no available bandwidth they are
postponed.

It is the role of host controller driver scheduler to guarantee bus access constraints.
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Part II

USB subsystem in HelenOS
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Chapter 4

USB subsystem architecture

The goal of the USB subsystem is to support USB devices in HelenOS. This goal consists of the following
issues:

1. Implement drivers for host controllers.

2. Implement drivers for USB devices.

3. Implement a mechanism for starting device driver when new device is plugged in.

4. Allow client applications to use the devices through the drivers.

5. Allow drivers to communicate with each other.

Fortunately, HelenOS already offers means for solving the last three issues. The device driver framework
(see Device driver framework in HelenOS [p. 5]) that can be used as the backing framework for USB related
drivers.

The generic framework — usually referred to as DDF — already offers the following:

• Starting drivers automatically (e.g. when a device is attached).

• Generic layer for driver to driver communication.

• Generic layer for exposing device interfaces to client applications.

• Software representation of physical connection of the devices.

Although DDF currently lacks some features, such as support for device unplugging, it was decided that the
concept is right and implementation stable enough to allow its usage as a backend for USB device drivers.

One of the greatest advantages of DDF is the pattern that each driver is a standalone task that communicates
with other drivers (or client applications) solely through IPC. Drivers then could be smaller which shall
positively affect the number of bugs present. The USB drivers follow this pattern and for more complicated
devices there are even several drivers that are cooperating.

This cooperation comes in two flavors. The first case is, for example, the UHCI driver (driver for host
controller). To make the driver simpler in terms of code, it was decided to split the driver into separate
driver for the host controller part and for root hub. These two drivers are tightly coupled and cannot run
without each other (i.e. failure of one of the drivers will render the other one unusable as well). Yet this
separation leads to cleaner code and easier maintenance.
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The second case are multi-interface devices. For example, a digital camera may offer two means to access
the photographs. The first one is through some vendor specific interface (for which you usually obtain the
drivers on a CD accompanying the camera itself). The second one serves as a fallback and the camera
is able to pretend that it is nothing more than a standard mass storage device. Coupling vendor interface
with a standard one serving as a fallback is quite common pattern among USB devices. To maximize the
possibility of using the fallback as easily as possible, a special driver for such devices was created. This
driver is started for any multi-interface device and its only role is to scan the device for interfaces it offers
and to launch drivers for each interface.

This multi-interface devices driver (referred to as USB MID driver) of course does not prevent from creating
vendor specific drivers. These drivers could simply override the usage of the provided MID driver by
offering higher score (suitability) for a specific device. Also, the overriding can be done on both levels.
Either the driver can take over the whole device or over one of its interfaces only. The authors believe that
such solution is versatile enough to satisfy needs of any USB device.

Figure below [p. 15] shows an example of USB physical topology.

PCI

OHCI

Bluetooth External HDD USB hub

Flash drive

UHCI

Keyboard USB hub

Mouse Printer

Figure 4.1: Physical USB topology

Although having both OHCI and UHCI chips on the same bus is something very rare there is principally
nothing to prevent that. The tree nodes are in 1:1 mapping to the hardware devices. The grey nodes refer
to internal devices that cannot be unplugged by normal means. That includes both host controllers and a
Bluetooth controller that is often connected via USB bus. Remaining devices create a common subset of
USB devices used today.

The next picture describes which drivers are actually started for each of these physical devices. To make
the picture simpler, only the UHCI branch is displayed.
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UHCI

USB keyboard

USB mouse USB flash drive

USB hub

pci0

pciintel
ctl

00:01.b

uhci-hcd
uhci-hc
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usb00 a1

usbmid
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HID0

usbhid
keyboard

usb01 a2
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hub

usb00 a3
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mouse
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printer0

usbflbk
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Figure 4.2: Mapping USB drivers to physical USB devices

The root node in the picture is the device node for PCI bus. As this node is not used directly, no detailed
information about it will be provided here.

To the PCI, the UHCI controller is connected. As mentioned before, UHCI driver consists of two separate
drivers controlling the same device. Notice that only the host controller driver provides an external function
uhci-hc for clients. The only tasks that may want to communicate with root hub are drivers controlling
the devices directly attached to it and these will use the parent function.

Another hub is connected to the one of the root hub ports. In this case, it is a normal external hub. Since the
hub is a simple device, it is driven by single driver. The provided function hub has no special functionality
(except to create entry in the devices tree).

All other devices are multi-interface ones. Because of that, the first node in the physical device is driven by
the MID driver. The driver creates a ctl function that is currently used only to display the presence of the
device in the device listing.

For each interface of these MID devices a new driver is started. For keyboard driver, the generic HID driver
is started and this driver creates one external function keyboard. To this function, the console connects
itself in order to receive key events. USB mouse driver is started for the mouse device and similarly to HID
driver creates a mouse function used by the console.

Because printer devices are not supported, a special driver was started for the printer interface. This fallback
driver is used for any device where no better driver exists. The purpose of the fallback driver usbflbk is to
create corresponding entries in the device tree and thus allow querying of the device from within HelenOS.

If a digital camera with two interfaces — vendor and mass storage — was connected to the system, the MID
driver would cause that each of the interfaces would be driven by the fallback driver as two separate devices.

Before explaining how the protocol used by device drivers for scheduling transfers to be issued by the host
controller looks like, a special shortcut used by the drivers must be explained.

Although the physical wiring of USB devices through hubs to the host computer creates a tree with possibly
many layers of nodes, from the point of the host controller the hierarchy is flat. The host controller targets
the devices by their assigned addresses and virtually does not care where in the physical topology they are
located.

Ideally, each driver could communicate only with the immediate parent and with its children (i.e. with
drivers controlling devices that are physically attached to it / it is physically attached to). Transformed into
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DDF, that would mean that the mouse from the figure above [p. 16] would send the request for transfer
scheduling first to the MID driver, which would forward it to the hub, then onto the root hub and finally to
the host controller driver itself.

The advantage of this parent-only communication is that it follows the physical topology closely. But there
are several disadvantages. Firstly, it is slower. This impact may not be of vital importance but it is there.
Next, it complicates the drivers along the way. They have to provide other functionality and for USB it is
really only a forwarding.

Because of this, and supported by the flat view by the host controller itself, authors decided that device
drivers would directly communicate with the host controller driver.

The following figure displays how the end device driver actually connects to the host controller for the first
time.

UHCIuhci-hc (id = 73)

root hub

hub (id = 81)

©1 GET HC HANDLE(81)

©2 GET HC HANDLE(81)

©3 dev->uhci fun

©4 ANSWER(EOK, 73)

©5 ANSWER(EOK, 73)
©6 SCHEDULE USB TRANSFER(...)

Figure 4.3: Connecting to host controller

Obviously, that has to be done by hopping over parents but this is done once when the device is added
and the handle (identifier) of the host controller is then kept for future use. Notice that also the answer is
hopping back because each request is a new IPC message.

For sending the actual transfer requests, a new connection directly to the host controller is opened.

Obviously, this recursive retrieval can be improved because the drivers along the way can cache the value
to be returned because that is something not expected to change.

The actual protocol used for communication between the drivers is using DDF interfaces and is built above
them. For example, host controller offers a USBHC interface that must implement callbacks for scheduling
transfers and for USB address management (needed by hubs to allow them assign new address to newly
connected devices). Similarly, USB devices offer USB interface where one of the most important function
is function for retrieving the handle of the host controller. This is used in the recursive search for host
controller.

The method details are described in following chapters together with notes for implementers. For device
drivers, a thin layer above DDF was created to simplify writing the drivers. This layer takes care of initial-
ization of the communication with host controller driver and with the device itself. The IPC is then hidden
under wrapper functions almost completely. Depending of the device, the driver may provide additional
interfaces (e.g. a keyboard interface) and implement its methods. The USB framework ensures that the
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USB communication could be written without need to bother with low level problems such as making IPC
connection etc.

As was stated in the USB overview, a device can support more configurations and each interface may offer
alternate settings. The possibility to have more configurations is used very rarely. As a matter of fact,
during development no device providing more than one configuration was encountered. Because of that,
the authors decided that multiple configurations would not be supported at all. See chapter about future
development [p. 77] for a few notes what changes would have to be made to support this feature.

Also the alternate interfaces are very rare and they are almost non-existent within the HID class. Thus the
support for them is very limited and not tested.



Chapter 5. USB subsystem libraries & API 19

Chapter 5

USB subsystem libraries & API

This chapter provides a brief overview of USB-related libraries available in HelenOS. Details for each of
the libraries can be found in subsequent chapters.

5.1 Common USB library

Definitions common for any USB device or host controller are in libusb. This includes structures for
device descriptors and basic constants.

This library is used by all other USB related libraries and thus you have to link with this library.

More details can be found in Common USB library [p. 46].

5.2 USB device drivers library

All USB device drivers are built above a common layer that provides abstraction over physical communi-
cation with a USB device. This layer is part of libusbdev and gives the programmer access to objects
using the same level of abstraction as many USB specifications.

For example, the programmer uses object called usb_pipe_t to communicate with the device and do not
have to care about actual USB transfers and transactions that are created on the bus.

Part of this library are also wrappers for standard device requests, simple parser of serialized descriptors or
helpers for device polling.

This library is described in more detail in Writing USB device drivers [p. 57].

5.3 USB library for host controllers

According to USB specification, a host controller must create so called bus interface to allow unified com-
munication from device drivers. The interface itself is described in the generic driver library but the im-
plementation is up to the drivers. However, the functionality is similar for any host controller and thus a
common library libusbhost exists.

This library provides helper structures and functions for keeping information about connected devices,
about their endpoints or keeping track of free bandwidth.

For more information see Writing USB host controller drivers [p. 70].
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5.4 USB library for human input devices

USB device for human input is self-descriptive in a way that each device describes which input controls it
offers and how these controls are set. The parsing of such description is not a trivial task and because HIDs
can be very specific, the whole parser and other helper functions were put into a separate library called
libusbhid.

This library is expected to be used by any HID driver and more information about the parser and other
functions can be found in Writing HID drivers and subdrivers [p. 66].
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Chapter 6

Changes to HelenOS not related with USB

This chapter describes changes to HelenOS that are not directly related to USB subsystem. Some of the
changes can remain in the HelenOS, some are rather temporary workarounds that shall be removed once
HelenOS supports certain feature.

The repository used by USB team was regularly updated with latest changes to the mainline repository. The
interval of such merges was less than fortnight and thus merging the USB back to the mainline shall not
produce many conflicts.

6.1 Kernel space

Changes to kernel include temporal workaround for missing physical memory allocator and a short sleep
system call.

Current version of HelenOS has no means to allow userspace tasks allocate physical memory with given
attributes. A task can create new address space area (continuous block of pages) but has no means to
specify where from the physical frames shall be allocated. That could lead to troubles with devices reading
or writing data from a memory. Such devices may use only 32-bit addressing and it is not possible to use
frames with addresses above 4GB.

Such allocator is currently being developed by another Software project team (NIC framework) and the
authors decided that it is not necessary to duplicate this work. Thus only a simple system call for retrieving
physical address was added. Obviously, this could fail on machines with more than 4GB memory but that
would mean that someone was able to use all 4GB of memory which is hard to imagine with available end
user software in HelenOS.

Memory caching was also disabled to prevent inconsistencies in communication between a device and a
driver.

The granularity of fibril sleep in userspace was not sufficient when executing operations on I/O space
registers. These operations must be separated by a very short delay that was not possible to ensure with
existing libraries. The kernel does not export the real time precisely enough and thus a simple actively
waiting system call was added.

The question whether to use a system call or some userspace routine is opened for further discussion among
HelenOS developers.

6.2 Device manager

During development, several problems in devman were found. These were reported upstream and repaired
in the mainline.
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Several minor improvements were applied only in USB repository. These might be either cherry-picked or
merged together with the whole USB subsystem.

6.3 The console server

The console server is responsible for switching virtual terminals and forwarding keyboard events to them.
console was extended to allow automatic detection of hot pluggable devices, such as USB keyboards.

The detection of hot-plug HIDs is done in following manner. The respective device drivers shall detect the
device, initialize it and create exposed DDF function for it. Keyboard device drivers shall add this function
to keyboard device class while mouse devices to the mouse one.

The console periodically checks directory with these classes and tries to connect to any new device that
appears there.

A special workaround was added to allow proper connection destruction when the driver stops sending new
events (typical situation for device unplugging).

It is expected that console would undergo a major rewrite in near future that would simplify its commu-
nication with device drivers and would probably lead to creating a special service for processing of events
from human input devices.

Such server might take care of some functionality currently handled in device drivers. For example, auto-
matic key repeat is handled in the device driver. The design of the driver would be cleaner if it would only
need to send ‘key press’ and ‘key release’ events and leave repetition on the server. The server may also
take care of layout switching, another functionality that is now duplicated in drivers.

Writing the HID server would probably require rather drastic changes to several components of HelenOS
and was beyond scope of the USB project.

6.4 PCI driver

The existing PCI driver was extended to allow interrupt enabling and to allow drivers of attached devices
write to PCI configuration space.

Unfortunately, similar changes were done by the NICF team with almost identical API. However, it is
expected that resolving the conflicts would be trivial.
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USB drivers in HelenOS
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Chapter 7

Host controller driver task

Driver

Driver logic

libusb/host

libdrv

IPC

Figure 7.1: Host controller driver structure

7.1 Role

The role of the host controller driver task is to provide interface for USB device drivers. The interface
is independent from different host controller implementations. Moreover, it contains functionality that is
shared or not specified by host controller specifications.

The host controller driver task interface is specified in <usbhc_iface.h> provided by libdrv. The
interface provides two sets of functions, the first set manages state of USB bus and it is a part of USB bus
driver, the other set provides access to communication capabilities of the underlying host controller. While
it is possible to use this interface directly in applications and device drivers, the suggested way is to use
USB bus driver frontend implemented in the libusb family of libraries.
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7.2 USB bus driver functionality provided by host controller driver
task

7.2.1 USB address management

USB specification dictates that every connected device in order to get to the addressed state needs to have a
7-bit address. Address 0 is considered default and should not be permanently assigned to any device. It is
the role of USB bus driver to keep track of assigned addresses and refuse to initialize a new device if there
is not a free address available.

Structure that keeps track of free and assigned addresses is called usb_device_keeper_t and can be
found in <usb/host/device_keeper.h> in libusbhost. Apart from maintaining the list of used
and free addresses it provides a mapping from USB address to DDF device handle and vice versa.

The last information that is kept in this structure is device’s speed. USB 1.1 allows device to communicate
in full speed or low speed. Moreover, devices using different speed can coexists on one bus, thus this
information needs to be stored per device.

New addresses are requested using device_keeper_get_free_address(), the returned address is
marked as occupied and device’s speed is stored. Once a new DDF instance has been created its handle is
bound to the USB address using device_keeper_bind().

To access information stored within this structure there is a set of functions. usb_device_keeper-
_find() returns USB address used by the device. usb_device_keeper_find_by_address()
provides access to address to DDF handle mapping. Finally, usb_device_keeper_get_speed()
returns speed information associated with USB address.

7.2.2 Communication pipe backend

Endpoints represent devices’ end of USB communication pipes. While device drivers communicate via
pipes, these pipes are software constructs and store information about the pipe’s hardware target. Host
controllers accept communication requests identified by address, endpoint number, direction, speed, transfer
type, and maximum size of data packet. Complete information is provided during pipe creation.

The structure is called endpoint_t and it is defined in <usb/host/endpoint.h>, provided by l-
ibusbhost. In addition to providing data storage, this structure allows host controller hooks and ability
to store host controller driver’s private data. It also serializes communication to prevent interruptions and
failures.

Pipe backends can be shared. It is possible for several processes to communicate with one device using
one registered endpoint. Attempts to register multiple endpoints targeting the same destination are not
supported. Endpoint sharing feature is used by USB utilities to access USB devices that are connected to
the system.

There is one special role endpoint_t structures are used for, the toggle protocol synchronization. Toggle
protocol is a simple sequence checking mechanism, it only alternates one bit. The problem is that this
sequence can be reset by communication with different endpoint on the same device (usually endpoint 0).
Thus, all control traffic needs to intercepted and checked for commands that reset toggle bit sequence.

Registered endpoints are stored in a structure called usb_endpoint_manager_t, defined in <usb/-
host/usb_endpoint_manager.h> in libusbhost. In addition to endpoint manipulation it pro-
vides usb_endpoint_manager_reset_if_need() that checks USB command for signs of toggle
sequence reset and bandwidth_count_usb11() that calculates required bandwidth in full speed bit-
times (100% bandwidth = 12000000 full-speed bit times).
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7.2.3 USB bandwidth allocation

Capacity of the USB bus is limited and USB devices have different data transport requirements. Thus, every
transfer type is handled differently. Isochronous and interrupt transfers (sometimes called periodic) are used
for regular transmissions of relatively small data, these transfers consist of one transaction complete within
one frame (1ms). On the other hand, control and bulk transfers happen relatively infrequently, consist of
several transactions and may need several frames to complete.

While every host controller provides a schedule to organize transfers in one frame, it is the role of USB bus
driver to make sure that transfers in that schedule are organized according to USB specification.

The bandwidth reservation happens during endpoint registration. Periodic transfers’ bandwidth require-
ments are calculated and if there is not enough bandwidth available, endpoint’s registration fails. Up to
90% of USB bandwidth can be reserved using this method. The remaining 10% is used by both control and
bulk transfers. The requirement to reserve 10% for control transfers is achieved using priorities within host
controller schedulers.

7.2.4 Linking requests and endpoints

Communication requests are bound to endpoints and the structure that represents this bond is called us-
b_transfer_batch_t. It is defined in <usb/host/batch.h>. Apart from storing the designated
endpoint it is the place where request buffers, callback pointer, and callback parameters are stored. These
information are necessary for any host controller and using a common structure prevents code duplication.
The structure provides a hook for host controller driver to store its specific memory representation of the
request.

7.3 UHCI Host controller driver

UHCI design guide mentions that UHCI was designed with hardware simplicity in mind. It means that
great deal of functionality is left to be implemented by the driver software. On the other hand, it also means
that there is a considerable freedom for OS developers in the driver’s implementation.

7.3.1 Legacy support, PCI control

UHCI hardware may integrate support for legacy use of mice and keyboards. Note that the implementation
described in the design guide1 is voluntary and it is not the only way to provide legacy support. However,
host controllers that do not follow UHCI design guide will need separate drivers and may fail to work with
generic HelenOS UHCI driver.

Legacy support, if implemented, is controlling PCI configuration space of the UHCI hardware. It has to
be turned off before any further actions are taken. This routine, called pci_disable_legacy(), is
implemented in pci.c.

Two more PCI specific routines, are implemented in pci.c:

• pci_get_my_registers() queries the PCI driver for hardware resources (I/O registers, IRQ num-
ber).

• pci_enable_irq() asks the PIC driver to enable IRQ assigned to the UHCI device.

1http://download.intel.com/technology/usb/UHCI11D.pdf

http://download.intel.com/technology/usb/UHCI11D.pdf
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7.3.2 HelenOS DDF device setup

In the DDF framework’s hierarchy, UHCI consists of two functions, a host controller device, and a root-hub
device. The former is controlled directly by the UHCI host controller driver task as a so called external
function. The latter is initialized as an internal function and its controller is handed over to the separate
UHCI root hub driver task. A minimal support that provides information about root hub’s resources is
present within the host controller driver task, this support structures implement root hub’s USB interface.

DDF device and host controller function’s initialization is implemented by device_setup_uhci(),
found in uhci.c. Root hub DDF function is initialized by rh_init() in root_hub.c.

7.3.3 Memory structures

Memory structures used by the UHCI hardware are described in chapter 3 of UHCI design guide. There are
several types of hardware accessible memory structures:

• Link Pointer (LP) — Link pointer is not a separate entity. It is either in a group of 1024 pointers, called
frame list, or it is a part of more complex memory structures described below.

• Queue Head (QH) — Queue head indicates a start of a separate group of transactions. UHCI does not
support QH stacking. While it is legal to have QH within a queue (any depth), only the last QH is kept
during schedule execution and the execution is stopped if that QH does not link to any further entity.

• Transfer Descriptor (TD) — Despite the name, TDs in fact describe transactions (as defined on page 9
of USB specification). TDs abstract sending of token packet, sending/receiving data packet (DATA0 or
DATA1) and a handshake packet (if applicable). While one TD might represent entire transfer, this does
not have to be the case with more complicated (i.e. control) transfers.

• Data buffer — Data buffer does not follow any special form and it provides raw data to be sent or that
have been received from the device. However, the memory it occupies has to be continuous for host
controller access (data to be sent during one transaction cannot cross page boundaries). It is the role of
UHCI hardware to provide actual encoding before the data reach the wire.

Due to the limitations of the LP type all structures, except the data buffer, need to be 16byte aligned. UHCI
hardware works with physical memory addresses and it is limited by the size of pointers (32bit). Thus the
driver needs to be careful about placement of memory structures. A simple memory allocator wrapper is
present in <utils/malloc32.h>.

All memory structures’ definitions are stored in the hw_struct in their respective files.

7.3.4 Device startup and initialization

After the legacy support has been turned off, the driver assumes control over the UHCI device. Device
initialization is divided into two phases. The first phase, called memory initialization prepares all the
structures that are to be used by the device and forms a schedule skeleton, the other assigns these structures
to the device and starts the hardware processing. If hardware interrupts can be used driver setups events
that cause interrupts. Note that polling mode is experimental and only available until more PIC drivers for
HelenOS are available, using it might result in performance degradation and/or other problems.

7.3.4.1 Schedule

UHCI design guide suggests using one queue for all transfer types (except for isochronous). HelenOS
UHCI driver uses a separate queue for every transfer. This has the advantage of easier scheduling, and it
also prevents one faulty transaction from halting the entire transfer queue.
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Figure 7.2: UHCI scheduling queue

HelenOS UHCI driver schedule uses one list of QHs just like the simple schedule suggested by the UHCI
design guide. However, the QHs representing transfer types are never used, and a new transfer adds its
own queue to the queue list. The exact position is between the last QH of the same transfer type, and the
dummy QH of the next transfer type. This addition is done using one atomic memory write that updates the
dependent pointer. Queue removal is done using the same pointer update technique.

Transfer queues are linked in a way to satisfy USB bus access constraints. The order of precedence: periodic
transfers (interrupt) → low speed control transfers → full speed control transfers → bulk transfers (only
full speed). The amount of periodic transfers is limited, thanks to USB bus driver, to 90% of bus bandwidth,
thus the remaining 10% can all be used by control transfers and only after these transfer types are satisfied
a bulk transfer can take place.

One might notice the separate queues for low and full speed control transfers. UHCI hardware supports a
feature called full speed bandwidth reclamation. This feature relies on the fact that there are two modes in
which queues can be executed — either all TDs in the queue are executed before moving to the next queue
(vertical mode), or just the first TD from the queue is executed. Switching full speed control and bulk
queues to the non-vertical mode and pointing the last bulk queue back to the first (dummy) control queue
may achieve better distribution of bandwidth among connected devices, and offer a better chance for bulk
transfers to access the bus. On the other hand, it may violate the USB bus access constraints and this feature
was reported buggy on certain hardware. Thus it is not used or enabled in the HelenOS UHCI driver, yet
the support is there for any future developer willing to explore the benefits of this technique.

The driver uses transfer_list_t to provide queue abstraction. Apart from providing access to dummy
QHs, this structure keeps a software list of all enqueued transfers. Pointers used in the UHCI structures use
physical memory address space and are not of much use. transfer_list_set_next() is used during
initialization to create the proper structure (described above). transfer_list_add_batch() is used
to enqueue a transfer, represented by the batch structure. transfer_list_remove_finished()
checks for completed transfers and removes them from the list for further processing. These two functions
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implement addition and removal routines described above. In case of fatal hardware error all pending
transfers need to be aborted and transfer_list_abort_all() does just that.

It is possible to construct a special scheduling structure using 1024 different frame schedule startup points
in the frame list. This structure, a binary or any other tree, might be used for advanced scheduling of
interrupt transfers. Interrupt transfers do not need to be scheduled in every frame and specify an interval
value of a minimal rate. While host controller driver is free to assign any lower value and it does not break
the specification to schedule these transfers on every frame, it might be beneficial to bandwidth sharing and
utilization. This advanced feature is not implemented.

7.3.5 Operation

The driver operates on events, if hardware interrupts are not available a single fibril is used to check UHCI
status and emulate interrupts.

There are two kinds of events the driver responds to, the first is user/software generated, the other is hard-
ware generated. User generated events are limited by the USBHC interface and include transfer requests
and USB bus driver requests. USB bus driver requests are handled by structures described in chapter USB
bus driver functionality provided by host controller driver task [p. 25].

Three types of transfers are supported: interrupt, control and bulk. Support for isochronous transfers was
postponed until any kind of multimedia framework is added to HelenOS. A usb_transfer_batch_t
instance is created. As most of the functionality is provided by libusbhc, only UHCI specific routines
are implemented. These routines create a memory structure made of one QH and several TDs:

• batch_control_write()

• batch_control_read()

• batch_interrupt_in()

• batch_interrupt_out()

• batch_bulk_in()

• batch_bulk_out()

After the memory structures are prepared, the batch is inserted into the right schedule.

Hardware generated events are interrupts. Interrupts might indicate a change in transaction’s status or
device errors. Status of usb_transfer_batch_t is checked using batch_is_complete(). This
routine walks all TDs until the last TD is complete without an error or a transaction error is found. Status is
recorded in the usb_transfer_batch_t and reported to the process that initiated the transfer.

Device errors indicate a severe condition, all pending transfers are aborted and hardware restart is attempted.
Up to three hardware restarts may happen until the driver gives up and reports malfunction.

7.3.6 UHCI Root Hub

USB specification defines USB root hub as a standard USB hub device. However, it allows parts of
hub functionality to be implemented in software. It means that some functionality needs to be emulated
(SET_ADDRESS), or not supported (per port power settings).
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7.3.6.1 HelenOS implementation

It was decided that rather than implementing a hub emulation layer, that would get UHCI root hub capabil-
ities to match those of regular hubs, a separate driver would be developed that accesses root hub hardware
directly. This decision has a disadvantage of having a separate driver for root hub devices and it is not
directly supported (it’s not forbidden either) by USB specification. On the other hand, it offers several
advantages. There is no hardware emulation, no hub descriptors, no parsing of USB requests, no construc-
tion of USB responses, no address assignment, no filtering of communication to the root hub. This means
that UHCI root hub driver is really simple, in fact sources in uspace/drv/uhci-rhd contain only few
hundred lines of code, including licenses and comments.

7.3.6.2 Root hub hardware device

UHCI specification mentions that every UHCI device must have at least two root hub ports. It allows more
ports to be present but does not specify a way to get the number of ports present. Thus only two ports are
considered and controlled by the driver.

7.3.6.3 Startup

The first part of root hub driver is implemented within the UHCI host controller driver, namely retrieving
the I/O address of registers controlling the ports (uhci_rh_init()). These can be found at offset 0xC
and occupy 2 bytes of IO space per port (uhci_init()). It is logical to implement this part within the
host controller driver (uhci.c and uhci_rh.c) as both host controller and its root hub are the same PCI
device. Once the address space is identified, control is handed over to the root hub driver itself.

7.3.6.4 Operation

The root hub driver starts a separate fibril for every port. This fibril periodically checks for changes on the
port by reading the port status register in uhci_port_check(). These changes include connection of a
new device and device removal.

When a new device is detected a device initialization routine uhci_port_new_device() is started.
The driver uses function usb_hc_new_device_wrapper() provided by libusb. This function is
provided a callback to port reset and enable routine (uhci_port_reset_enable()). This routine is
device specific and could not be abstracted to the library. Root hub driver stores a device handle to the
newly added device, it will be used during device removal, when such mechanism in HelenOS becomes
available.

If a connection change is detected on a port that had a device assigned, it is assumed that device was
disconnected and a disconnect routine uhci_port_remove_device() is started. Device removal is
not yet supported by HelenOS.

7.3.7 Features not implemented

It was decided that implementing certain features is not possible/too low priority in the given time frame
and the state of the OS.

7.3.7.1 Host controller

Support for full speed bandwidth reclamation has been dropped due to hardware issues and a limited benefit
this feature offers.
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Support for isochronous transfers is not implemented as there was no way to test this feature and its imple-
mentation will be dependent on HelenOS media framework that does not exist at the moment.

There might be hardware quirks required for certain UHCI hardware implementations, these were not con-
sidered and will require extensive testing.

7.3.7.2 Root Hub

There are no signs of power management whatsoever. No work has been done in HelenOS in this direction,
and the port suspend/resume functionality is not used.

Although UHCI design guide does not specify a way to get the number of present root hub ports, some
OSes try to figure this out by reading the IO space after the second port control register.

Ability to detect over-current condition is not part of the original UHCI design guide and was added in
Intel chip set specification. However, implementation of this feature vary in quality, some devices does not
report over-current condition at all, others report constant false positive. Enabling this feature would need
per device quirks.

7.4 OHCI Host controller driver

OHCI host controller is a rather complicated device and `the design goal has been to balance between the
complexity of the hardware and software’2. It supports more functionality in hardware, but also provides
less freedom for system developers.

7.4.1 Legacy control, pre-OS driver

OHCI provides a way to access USB devices even before an OS is loaded. This enables computers to
support features such as USB mass storage boot, and availability of basic HID device to systems that do
not support USB. Thankfully, OHCI provides a rather detailed information about hands-off routines in
various pre-OS configurations in chapter 5.1.1.3 Take control of host controller. HelenOS OHCI driver’s
implementation is in hc_gain_control() in hc.c.

7.4.2 HelenOS DDF device setup

OHCI DDF setup copies that of UHCI driver. It uses one internal and one external function (for root hub and
host controller). The only difference is in the driver used to control OHCI root hub. OHCI root hub shares
some resources (like interrupt) with the host controller, that prevent the driver separation. A decision was
made to follow USB specification and provide an emulation layer for standard USB hub device interface.

Implementation of DDF specific code can be found in ohci.c. Root hub registration to devman is imple-
mented in hc_register_hub() in hc.c.

7.4.3 Memory structures

OHCI host controller uses several rather complicated memory structures described in chapter 4 of OHCI
specification:

2OHCI specification, ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.pdf, p. 1

ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.pdf
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• Endpoint Descriptor (ED) — ED is USB device’s endpoint representation. This memory structure is
kept between transfers and maintains endpoint status toggle protocol integrity. Hooks and private data
place in usb_enpoint_manager_t are utilized for quick access to this structure for every endpoint.
EDs require that they have at least one TD assigned and will not execute if there is only one TD in their
list. This requirement makes it easier to enqueue more TDs as the dummy TD becomes the first TD of a
new transfer. ed_t is defined in <hw_struct/endpoint_descriptor.h>.

• Transfer Descriptor

– General Transfer Descriptor (TD) — TD may represent entire transfer if it’s not a control transfer. It
is capable of transferring of up to 8kB of data and maintains its state across frames. TDs are assigned
to EDs and form a linked list. It may use its own toggle protocol values or use the one stored in parent
ED. td_t is defined in <hw_struct/transfer_descriptor.h>

– Isochronous Transfer Descriptor (ITD) — ITDs are not currently used as the support for streaming
media is not present. These structures may represent up to 8 isochronous data transactions. id_t is
defined in <hw_struct/iso_transfer_descriptor.h>

• Host Controller Communication Area (HCCA) — HCCA is a multi-purpose structure. It contains start-
ing EDs for periodic schedule (similar to UHCI frame list). Host controller regularly update a frame
number in one of its fields and a list of completed TDs is maintained here. hcca_t is defined in <hw_-
struct/hcca.h>.

• Data Buffer — Memory structures described above support up to 8kB buffers. It means that processing
that structure can automatically advance offset pointer and even cross page boundaries (once).

OHCI hardware works in physical memory address space and its pointer type is limited (32bit). Thus the
driver needs to be careful about placement of memory structures. A simple memory allocator wrapper is
present in <utils/malloc32.h>.

7.4.4 Device startup and initialization

OHCI initialization is done in several phases. The first stage prepares memory structures and constructs a
skeleton schedule. The second stage initializes root hub emulation. Only after these preparations complete
successfully can the control be gained from any BIOS/pre-OS driver. Once the driver is in control, it can
reset and setup the device to use the prepared structures. Note that immediately after OHCI reset an interrupt
will be triggered if there are USB devices connected, thus it is crucial that it can be processed in a sound
environment.

7.4.4.1 Schedule

OHCI uses several schedules for accessing the bus. The first schedule is for periodic transfers and uses
32 startup points in the HCCA. While OHCI suggests using an advanced structure for interrupt transfer
scheduling, it was decided that for the sake of simplicity only one interval value would be used. This does
not break the USB specification and makes the driver much less complicated. USB bus driver guarantees
that all scheduled transfers in this schedule will complete in one frame.

The second schedule is used for control transfers. It has a separate startup point and the driver must indicate
that there is a traffic present to the host controller. This schedule operates in a round-robin fashion as the
last ED is remembered across frames. The third schedule operates in the same way as the second and it is
used for bulk transfers.

The first 10% of every frame is reserved for non-periodic (control and bulk) transfers. Host controller
alternates between control and bulk schedules according to the pre set ration (1:1, 2:1, 4:1). While this does
not obey the USB specification to the letter, it enables some bulk throughput even on very busy schedules.
After the required 10% has been served, the priority is given to the periodic schedule. All transfers in
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periodic schedule must complete and if there is any time remaining it is allocated to the non-periodic
schedules.

Figure 7.3: OHCI scheduling queues

for schedule abstraction. It uses dummy first ED to avoid translating physical addresses and register access.
Every endpoint is enqueued during its registration and dequeued when it’s no longer necessary. As all
the work is done by hardware, it is the only thing left to the driver. endpoint_list_add_ep() and
endpoint_list_remove_ep() are implemented in endpoint_list.c

7.4.5 Operation

Unless interrupts are disabled, OHCI hcd operation is event-driven. USB bus driver requests are handled
using the provided structures. The sole exception is endpoint registration/unregistration. The fact that OHCI
knows about and provides structure for endpoints (ED) makes it necessary to use hooks and private data
storage provided by the usb_endpoint_manager_t to store endpoint’s ED. Moreover, one dummy TD
needs to be assigned to every new ED. As there is no place in ed_t to store virtual/linear address of this
dummy TD, a separate structure is used to link EDs to their respective TDs, called hcd_endpoint_t.

While endpoint registration is a bit more complicated, transfer requests are rather simple. There is a usb_-
transfer_batch_t instance created to store the transfer’s data and link to the endpoint. OHCI specific
routines are implemented to setup memory structures:

• batch_control_write()
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• batch_control_read()

• batch_interrupt_in()

• batch_interrupt_out()

• batch_bulk_in()

• batch_bulk_out()

The easy part comes in when the batch is about to be scheduled. There is no need to search for appropriate
queue or list, it was done during endpoint registration. Thus, only a pointer update in ED is necessary to
enqueue the transfer. In case of control and bulk transfer the host controller needs not to be notified to
consider appropriate schedules during execution. Requests for the root hub are redirected to the emulation
software.

OHCI relies on interrupts to provide the driver with event information. Interrupts may indicate a transfer
completion or error, root hub event, or a host controller error. Root hub status events are handled by the
OHCI root hub emulation software and host controller is restarted on serious errors.

OHCI host controller maintains two lists of retired TDs. The first is accessible via a MMIO register and
is actively used by the host controller to store retired TDs. The other is stored in HCCA and is updated
at the end of frame if this update is allowed. This update can be accompanied by an interrupt. As both
of these lists use physical addresses, they are completely useless. However, the interrupt indicating update
also indicates a transfer completion or partial completion. This interrupt is used to check pending usb_t-
ransfer_batch_t structures for completion and the outcome is reported to the process that requested
the transfer.

7.5 OHCI root hub driver

OHCI root hub and its workflow is much similar to the normal USB hub (see USB hub driver [p. 36]).
Therefore only a simple layer between the host controller driver and the hub driver is needed. This layer
processes hub drivers’ requests and ‘emulates’ function of the normal USB hub. It is embedded into the
OHCI driver. This implementation is recommended by the OHCI specification.

7.5.1 Registers

For communication with the root hub device the driver uses four types of memory mapped registers initial-
ized by the host controller driver (HCD). Two of these are registers with root hub information. Third is a
root hub status register and the fourth is the port status register. Further information on these registers can
be found in OHCI specification.

7.5.2 Initialization

Initialization takes place in function rh_init(). The root hub driver initializes the structure representing
the hub. The interrupt buffer is preallocated, so that it doesn’t need to be allocated for each single interrupt
request. Also, the hub descriptor and the full configuration descriptors are created as they are not to be
changed for a particular root hub during its lifetime.

The HCD then starts the standard hub driver and ‘remembers’ root hub USB address so that all requests to
this address are redirected to the root hub driver.
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7.5.3 Operation

The driver receives two types of events: requests from the USB hub driver and interrupts from HCD. Hub
driver requests are handled in rh_request(), HCD interrupts in rh_interrupt().

7.5.3.1 Hub driver requests

These requests are either control requests or interrupt requests.

Control transfers

Control requests are handled in process_ctrl_request(). These might be commands to get hub
status, descriptor of certain type or configuration, set or clear a feature, set address, configuration or de-
scriptor. More information on these commands is available in USB hub specification (USB specification3,
chapter 11).

For device descriptor request, interface descriptor request and endpoint descriptor request answers, static
instances of these descriptors are used — these are the same for all OHCI root hubs and do not need to be
allocated for each instance.

Data for status requests are in status registers. These registers have mostly the same format as the normal
hub driver expects, thus they are only copied into the response.

Set address request’ returns `ENOTSUP error — the root hub should have fixed address ac-
cording to specification. Set descriptor request is not supported and returns ENOTSUP error. Set configura-
tion request is ignored. These changes are ignored or not supported, because have no meaning for the root
hub.

Interrupt transfers

When the root hub receives an interrupt request, it checks whether there are any changes, using hub and
port status registers. If there is a change, it fills the status change bitmask (preallocated in the hub structure)
and finalizes the transfer (process_interrupt_mask_in_instance()). If there is no change, the
driver stores the request pointer and waits for next event.

Upon receiving an interrupt (in interrupt callback function rh_interrupt() the driver will fill the status
change bitmask and finalize the stored transfer. Only one interrupt transfer can be stored per root hub
instance — more interrupt requests should not occur (the hub driver is expected to be waiting for the result
of the previous interrupt transfer).

7.5.3.2 Interrupts

When an interrupt is received, the driver checks whether there is a waiting interrupt transfer and if there is
one, it finalizes it. Otherwise the interrupt is ignored — the root hub driver cannot initiate transfers to the
hub driver.

3http://esd.cs.ucr.edu/webres/usb11.pdf

http://esd.cs.ucr.edu/webres/usb11.pdf
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Chapter 8

USB hub driver

Hubs are devices used to extend the number of available ports for host controller so that more devices can
be plugged to it. This section describes non-root hubs. A typical non-root hub has one upstream and several
downstream ports.

8.1 Specification

8.1.1 Responsibilities of the hub driver

The hub driver is responsible mainly for detecting a new device plugged into the hub and detecting when
a device has been unplugged 1. In the former case, the driver must enable the corresponding port, acquire
and set address of the new device and start/notice the appropriate driver, if available. In the latter case, the
driver should free the unplugged devices’ address and should notice devices’ driver that the device has been
unplugged. However, this cannot implemented, because DDF does not support disconnecting devices and
terminating their drivers 2.

Another task of the driver is to handle the over-current conditions. The driver powers down ports that
indicate over-current condition. This is related to overcurrent protection of USB devices.

The driver should also manage the power available to the devices in the USB tree. This is not implemented,
because all the hubs seem to indicate that they are self-powered and thus do not need any bus-power man-
agement.

8.1.2 HelenOS specific tasks

The USB hub driver, as any other USB driver, communicates with device endpoints trough the host con-
troller driver. That means it must connect to this driver and initialize communication with the proper host
controller driver instance (there might be more than one USB host controller in the system). For their ini-
tialization and administration the pipe API is used (see Writing USB device drivers — The API [p. 58]).
This automatically initializes the hub endpoint communication channels before entering hub driver code.

Besides the connections to the devices’ endpoints (pipes) the hub driver also needs direct connection to the
host controller driver. The hub driver needs this connection to reserve the default address on HC and to
requst a free address from HCD for newly plugged devices. This connection must be initialized by hand
and open whenever hub driver needs to reserve the default address or to request a new address. After that it
must be closed again.

1By plugging a device we understand physically attaching devices USB connector to a hub port. By unplugging a device we
understand detaching USB connector from hub port

2see Support for device unplugging [p. ??] in Future development [p. 77]
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8.2 Implementation

Hub driver implementation is in uspace/drv/usbhub. The driver first initializes structures for USB
device drivers When a new hub is registered, the driver initializes its structures and starts its fibril. This
polls the hub on the interrupt pipe and handles any detected changes.

8.2.1 Startup and initialization

Initialization of a new hub instance first enters code of the pipe API framework, which initializes commu-
nication links to the hub devices’ endpoints. Hub has only two endpoints — default control endpoint and
interrupt endpoint. The interrupt ednpoint is defined by hub_status_change_endpoint_descr-
iption in main.c. Then the driver enters usb_hub_add_device() and loads basic information
about the hub, such as port count and list of ports (usb_hub_process_hub_specific_info). It
also initializes connection to the host controller. All this information is stored in a hub-representing struc-
ture usb_hub_info_t.

After obtaining the hub information and creating the hub instance, the hub ports are powered up. After that
a fibril with hub-control loop is started by calling usb_device_auto_poll() with hub_port_ch-
anges_callback() and a pointer to hub-representing structure as its parameters. Thus each properly
initialized hub has its own fibril. This way an error on one hub should not cause problems on other hubs. It
also prevents some deadlock scenarios, such as two hubs reserving default address on the same HC.

8.2.2 Operation

Hub driver works in a control loop that checks changes on ‘its’ hub and then waits a specified time period.
In the release version, the time period is set to 100 ms. It can be, however, set to much longer time for
debug purposes.

If an error occurs while waiting for an interrupt from the hub, usb_hub_polling_terminated_ca-
llback() is called, gracefully terminating the hub instance.

If there is a change in hub status, the hub control loop invokes hub_port_changes_callback().
The hub driver should receive at least one change in each loop. The status change can occur either on the
hub or on one or more of its ports. All indicated changes are then handled one by one.

8.2.2.1 Hub status changes

After detecting a global hub status change hub driver asks hub for hub status bitmap containing status and
status change flags. Status changes occurring on a hub are local power status change and over-current
condition change. They are handled in usb_hub_process_global_interrupt().

Local power change is ignored. It seems that all hubs indicate that they are self-powered making any
attempt on hub power management almost futile, including response to hub local power change.

On the over-current condition the driver shuts down power on all hub ports. After this condition is over,
power on all ports is restored.

8.2.2.2 Port status changes

Handling port status changes is the most important responsibility of the hub. They are handled in usb-
_hub_process_port_interrupt(). This function first asks for port status bitmap containing port
status and port status change flags.
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Hub indicates port change whenever a new device is plugged or unplugged. It also indicates the over-current
condition, port reset and also enable/suspend change.

Port enabled and port suspended changes are ignored — their flags are only cleared so that they are not
indicated again. These changes can be generated only by hub driver, which currently does not do this. They
are related to power management functions which are not implemented (see Future development [p. 77]).

8.2.2.3 Adding a new device

When a device is plugged into a USB hub it causes the hub to indicate port connection change. In such a
case the hub driver starts a new fibril that will reset the port, wait until it is enabled, assign it a new address
received from HCD and finally start/notice its driver. Reseting the port and requesting new address is done
in libusb function usb_hc_new_device_wrapper().

If any of these operations fails, the default address is released and the hub driver does not continue enabling
the device. However if the device triggers connection change again, the whole process is restarted.

8.2.2.4 Removing a device

As DDF does not support device removal, the hub driver only clears the change status bit and continues
in such case. However, should the device removal feature be added into DDF, there is commented code
snippet for devices’ address release in the routine for the connection status change usb_hub_removed-
_device().

The host controller driver should ignore requests from the USB drivers that are directed to unplugged
devices and return an error to it. This way the driver of the unplugged device should notice that the device
was unplugged and stop.

8.2.2.5 Enable/suspend change

These changes are ignored by the driver. Hub driver does not enable/suspend ports, therefore these changes
should not occur. However, if such change a occurs, the change indicating flag is cleared.

8.2.3 Unplugging a hub

When a hub is unplugged, the driver control loop detects a communication error and calls usb_hub_po-
lling_terminated_callback(). This function releases the hub structures, effectively stopping the
hub instance. This is generally the recommended way to unplug any USB device.
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Chapter 9

HID class driver

9.1 Introduction

The HID class comprises devices that allow users to control computer systems. Typical examples are key-
boards, mouses, joysticks, various buttons, switches, data gloves, etc. Some of these devices also provide
some sort of feedback to the user (displays, audio feedback, etc.).

The USB HID device class definition1 specifies how such devices should be implemented and how a HID
class driver should communicate with them. As various HID devices may have very different requirements,
this document defines a generic and extensible protocol called Report protocol (see Report parser [p. 41]).

9.1.1 HID device characteristics

Some of HID devices, namely keyboards and mouses, may require BIOS support (so that they may be used
even before the OS and its USB drivers are loaded). These are called Boot devices. As the Report protocol
may be significantly complex, there is a pre-defined Boot protocol for keyboards and mouses. Support for
this protocol is declared by defining an interface to have Boot Interface Subclass (see Device descriptors
and device classes [p. 9]).

Each HID device has at least two pipes (i.e. endpoints) — a Control pipe (default and present in all USB
devices) and an Interrupt In pipe. Optionally, an additional Interrupt Out pipe may be present (for detailed
description of these pipes, see the USB HID class definition, part 4.4).

HID devices are characterized by HID class-specific descriptors — HID descriptor, Report descriptor and
Physical descriptor(s). The HID descriptor mainly characterizes the following Report and Physical descrip-
tors. There is at least one Report descriptor per interface and any number of Physical descriptors. Report
descriptor characterizes the Reports used by the device to communicate with the host. It must be parsed in
order for the driver to be able to parse (and interpret) incoming Reports. (For details on Report descriptor,
see the USB HID class definition, part 6.2.2.) There are three types of reports — Input (used for data from
the device), Output (data to the device) and Feature (describes configuration information that can be sent to
the device).

Physical descriptor provides information about the part of human body used to activate some control (for
details, see USB HID class definition, part 6.2.3). This is in fact a quite advanced feature and is not
supported in the HelenOS USB HID driver. (Even if it was supported, the system could make no use of it
anyway.)

1http://www.usb.org/developers/devclass_docs/HID1_11.pdf

http://www.usb.org/developers/devclass_docs/HID1_11.pdf
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9.2 HID driver

All USB HID devices share the same way of communicating with host (using the Interrupt In pipe) and the
same format of data (Reports). Thus only the data interpretation is what makes the devices distinct from
application point of view.

This allows separation of handling the HID device on the lower level from the data interpretation and
processing on the higher level. There are two ways to achieve this:

1. Separate the main HID driver (communication with the device) and the device-specific drivers (data
interpretation and processing) into independent processes. These specific drivers would be launched
on-demand, based on the characteristics of the device.

2. Retain whole HID driver in one process, but separate the interpretation logic into modules with clearly
defined API.

Both approaches have their pros and cons which will be discussed in the following paragraphs.

The first approach (separate processes) is more clean from the design point of view — different tasks are
done by different processes — all in the spirit of a true microkernel OS. Adding a new driver for some
special device would be also easier, as the existing code would not have to be changed. On the other hand,
there would be some non-trivial obstructions to overcome. Firstly, the report parsing could not be done
inside the main HID driver as there would be no way of sending the parsed report over to the child driver
processes. It would have to be serialized, but then it would be easier (and with less IPC involved) to just
send unparsed reports over to the child drivers and let them do the parsing. However, in such case the idea
of separating common HID logic from device-specific would not be fully accomplished. Another obstacle
is the distinction between various types of devices and the need to associate drivers with devices. With
DDF (see Device driver framework in HelenOS [p. 5]) in place, it would be necessary to create some sort of
match IDs for each device, based on the contents of the Report descriptor. As this may be fairly complex, it
might be quite complicated to create universally functional match IDs.

The second approach (one process handling all kinds of HID devices) would make it harder, or at least less
straightforward, to add drivers for new devices as it would change the code of the whole driver which would
then need to be recompiled and restarted. However, with well-defined API for the ‘subdriver’ modules it
would not be very hard to create such code and it would be also quite easy to communicate directly with the
device in case of need. The Report parsing may be done in the main part of the driver, so that the subdrivers
receive parsed data and can do only the required interpretation. Another advantage is the special handling
of Boot devices — e.g. falling back to the Boot protocol in case there is no subdriver that understands the
report.

Therefore, the autors decided for the second approach, creating one complex HID driver which handles all
kinds of devices but has a clean subdriver API.

9.2.1 HID driver core

The core of the HID driver is responsible for several tasks:

• Creating and initializing an internal structure that holds information about the device (usb_hid_dev-
_t).

• Parsing the Report descriptor and initializing the structure for parsing Reports.

• Periodic polling for data, parsing and passing the parsed data to the subdrivers.



Chapter 9. HID class driver 41

In the initialization phase (usb_hid_init()), the driver first checks if the device declares support of
either keyboard or mouse boot protocol. Then it initializes the report parser by retrieving and parsing the
Report descriptor (usb_hid_process_report_descriptor()). Afterwards it searches for any
suitable subdrivers, comparing their requirements with the device characteristics (usb_hid_find_sub-
drivers()). If none are found or if the Report descriptor could not be parsed, the driver falls back to the
boot protocol, if it is supported by the device. Otherwise it initializes all subdrivers matched to the device.

During normal operation, the driver polls the device for new data and any time the data arrive, it parses the
incoming Report and passes it to the subdrivers’ callbacks. For polling, it uses the facilities provided by
libusb (see Automatic polling [p. 58]). Functions used as callbacks for automatic polling are usb_hi-
d_polling_callback() and usb_hid_polling_ended_callback().

The code of the driver core can be found in /uspace/drv/usbhid/.

9.2.2 Subdriver API

Each subdriver must specify properties of the device it wants to control (so that it may be matched to
the device) and several callbacks for various situation encountered when controlling the device. These
situations are:

• There is a new device of the desired type and a new usb_hid_dev_t structure is being initialized.

• There are new data from the device.

• Polling of the device ended (probably due to some error).

• The usb_hid_dev_t structure representing the device is being destroyed.

By defining callbacks for these situation, the driver may initialize its own data structure when a new device
has been added, process the incoming data and do any required cleanup. The core of the HID driver
receives events from the autopolling loop (new data, polling was terminated) and executes the callbacks of
all initialized subdrivers sequentially. The callback for initialization is called in the usb_hid_init()
function after the HID device structure has been initialized. The callback for deinitialization is executed in
the usb_hid_free() function, which is called when the driver is releasing control of the device.

For detailed information about writing HID subdrivers, see Writing HID subdrivers [p. 66].

9.2.3 Report parser

As it was already mentioned (see HID device characteristics [p. 39]), HID devices communicate with the
host in form of so-called Reports. Reports are byte arrays in format specified by Report Descriptor. Report
parser reads both parsed Report Descriptor and Reports and translate data from logical units, used by de-
vices, and physical units, used by host. For basic introduction to HID Report parser API see section HID
Report parser [p. 68] of the Writing HID drivers and subdrivers chapter.

The Report parser is responsible for making out the meaning of data sent between HID device and the
host. As it was discussed above, data are sent in form of reports. Their structure is defined by the Report
Descriptor. The Report Descriptor is a flat byte array where predefined tags can be recognized (see USB
HID Class Definition, part 6.2.2) followed by the data of particular tag. There are three level of tags:

• Main — which define every single report item (or data field). Attributes of item are defined by current
parsing state table and by tag’s data

• Global — make presistent change of the current parsing state table.

• Local — change the current parsing state table with effect only to the first next Main tag
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Always when Main tag is discovered, an appropriate count of report items (defined by the parsing state
table) is created in the Report Structure.

Here it is needed to clarify the Report Structure (usb_hid_report_t). It contains all information from
the Report Descriptor about all Reports (usb_hid_report_description_t) and its fields (usb_-
hid_report_field_t). As the HID driver changed in time, the Report Structure also went through
changes.

The first approach was having structure which understands not only the HID data, but also the needs of HID
driver. The Report Structure was flat, meaning that all report items of all reports were in one long linked
list. It was very comfortable, but also inefficient. HID driver could register callbacks for some types of HID
devices or more precisely, for some specifical data sent by device. In fact there were two specific callbacks
— one for keyboard and one for mouse. This approach is very limited and for example subdriver matching
is impossible to make working.

The second approach was inspired by the LUFA2 library. LUFA is an open-source USB library for the
USB-enabled AVR microcontrollers, released under the MIT license. It is designed to provide an easy to
use, feature rich framework for the development of USB peripherals and hosts. In this approach, Report
Parser does not register any callbacks. Data are filled directly to the Report Structure, where they can be
found by HID driver or subdrivers. The Report Parser always parses the whole report and after the parsing
is done, whole Report Structure is sent to the particular driver which can decide which data to process
and which not. That was for Input Reports, but for Output Reports it is very similar. Driver fills all data
fields in the Report Structure he wants to fill and lets the Report Parser to fill the output report buffer. For
detailed view on how the Report Structure could be traversed see HID Report parser [p. 68]. Also, due to
the structured organization of the Report Structure the processing of report is much more effective.

9.2.3.1 Report Parser Limitations

As mentioned in section HID Report parser [p. 68], the Feature reports are not supported. On the Report
Descriptor level they are well parsed, but the API for HID driver is missing. Feature Reports are very rare
and we did not come across any device using them during development.

According to the USB HID Class Definition suggestion, the Delimiters are supported only in the basic
form. Delimiters allow to define alternative Usages for one Report Item. Specification allows to reduce this
set of Usages and make only the first one, the most preffered, accessible. For details see USB HID Class
Definition, part 6.2.2.8.

The Report parser also omits the Designator Index values, which determines the body part used for a control
(index points to a designator in the Physical descriptor) and String Index values, which allows a string to be
associated with a particular item or control (index points to a String Descriptor).

9.3 Keyboard subdriver

The USB keyboard subdriver provides means to communicate with and use any standard-compliant USB
keyboard. It takes care of device initialization, polling the device for Input reports and relaying parsed data
to applications (actually only to the console), maintaining the state of locks (Caps Lock, Num Lock and
Scroll Lock), synchronization of LEDs with the locks and auto-repeating of keys.

This subdriver is used either if the Report contains Collection with Usage Keyboard from Usage page
Generic Desktop (for details about Collections and Usages see section Report and report descriptor pars-
ing [p. 66]; detailed information are also in the USB HID class definition, part 6.2.2.6, Usage pages are
listed in HID Usage Tables3), or Boot class keyboard for which there was no other subdriver matched.

2http://www.fourwalledcubicle.com/files/LUFA/Doc/091122/html/main.html
3http://www.usb.org/developers/devclass_docs/Hut1_12.pdf

http://www.fourwalledcubicle.com/files/LUFA/Doc/091122/html/main.html
http://www.usb.org/developers/devclass_docs/Hut1_12.pdf
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The subdriver is located in /uspace/drv/usbhid/kbd/. The main structure, representing keyboard
is usbhid_kbd_t, which uses the generic HID device structure (see above) and holds keyboard-specific
information, such as currently pressed keys, active locks or information about auto-repeating of keys (see
<usb/hid/kbd/kbddev.h>).

When the control over device is handled to the subdriver (by calling usb_kbd_init() from the HID core
initialization function usb_hid_init()), it creates a new usbhid_kbd_t structure and initializes it.
The initialization consists mainly of setting some default values, preparing buffers, creating a fibril for key
autorepeat (see <usb/hid/kbd/kbdrepeat.h>) and creating a DDF function for the keyboard. It
also sets the LEDs on the keyboard to the default value (Num Lock turned on, other turned off) and sets the
Idle rate4 to 0 (i.e. infinity — the keyboard will only report when a new event is available).

After receiving a report (via callback usb_kbd_polling_callback()) and parsing it, the subdriver
evaluates which keys have been pressed or released, updates the state of modifiers and lock keys and noti-
fies applications connected to the driver. In fact, currently the driver only communicates with the console
to which it sends new key events. In order for the console to be able to connect to the HID driver con-
trolling the keyboard device, the keyboard subdriver creates a DDF function (named keyboard) and
adds it to the keyboard class. The console periodically checks this class for new functions and tries
to create a connection to such function (i.e. driver). The connection from the console is handled in the
\func({default_connection_handler()}) function, defined in kbddev.c.

9.4 Mouse subdriver

The mouse subdriver (located in /uspace/drv/usbhid/mouse/) takes care of HID devices providing
mouse functionality. It is used either if the Report contains Collection with Usage Mouse from Usage page
Generic Desktop, or as a fallback for any device declaring support of mouse Boot protocol.

In the initialization routine (usb_mouse_init()) it creates the main mouse structure (usb_mouse_-
t) and initializes it by creating buffer for pressed buttons and creating DDF function (and adds it to class
mouse so that the console will try to connect to this function as well).

When a new event occurs (usb_mouse_polling_callback()), the subdriver retrieves values for X
and Y axes, for the wheel and for buttons. The movement in X and Y axes together with the buttons are
sent to the console (if there is one connected) as mouse events. The wheel scrolling is treated as pressing
arrow keys (up or down; actually one move of the wheel is interpreted as 3 presses of the corresponding
arrow key).

9.5 Multimedia keys subdriver

Multimedia keyboards often have separate interface for multimedia keys. Though this is not specified by
any standard, most of vendors use such separate interface and report the keys as Usages from the Consumer
Usage page. This allows for a fairly generic way to handle these keys. Therefore, a specialized subdriver
for these keys was added to the USB HID driver in HelenOS (it is located in /uspace/drv/usbhid/
multimedia/).

This subdriver is initialized for any interface on which the device’s Reports contain Usages from page
Consumer. Currently, there is no use for these keys in HelenOS, but in the future it should be easy to
add mapping of these Usages to any HelenOS keycodes (by altering the usb_hid_keymap_consumer
static array in keymap.c) or to process them in other way (by modifying the usb_multimedia_pol-
ling_callback() function).

4Rate at which the device would periodically report events even if there are none new events ready.
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9.6 Generic HID subdriver

In order to allow simple and straightforward extensibility of HID device support, a generic HID subdriver
was implemented. This subdriver is initialized as a fallback for each device (more precisely for each in-
terface) not supported by other subdrivers and additionaly for all supported devices (interfaces). Its main
function is to provide interface for third-party applications to receive reports from the device.

It creates a node in the device tree (named hid) to which the applications may connect. The client interface
is available in <usb/hid/iface.h> of libusbhid. It consists of four functions:

• usbhid_dev_get_report_descriptor_length() which returns length of the Report descrip-
tor in bytes. This is needed to parse the Report descriptor in the application.

• usbhid_dev_get_report_descriptor() which retrieves the Report descriptor of the device.

• usbhid_dev_get_event_length() returns the maximum size of the incoming Report in bytes.
(Useful to prepare a buffer for the Reports.)

• usbhid_dev_get_event() which retrieves the last Report reported by the device, together with its
number (to distinguish already processed Reports).

This implies that the application receives raw data from the device and must do all the parsing by itself. It
was designed this way because of problems with sending structured data over IPC. They would have to be
serialized but then it is easier just to send the raw data from the device. This is also the reason for the first
two interface functions — getting the Report descriptor and its length — as these are needed for initializing
the HID parser. The HID parser is part of libusbhid and is located in <usb/hid/hidparser.h>
and <usb/hid/hiddescriptor.h>.
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Part IV

Writing USB drivers for HelenOS
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Chapter 10

Introduction to writing USB drivers

This chapter is an introduction for writing drivers of USB devices and USB host controllers. It provides
general guidelines for their writing and is followed by separate chapters describing implementations of USB
device drivers and drivers of host controllers.

Following sections will describe features available to the developer of USB drivers and used conventions.

10.1 Common USB library

Because all USB drivers share some functionality (such as communication with their host controller), a
common USB library exists. The library is located in /uspace/lib/usb, the actual library file is
/uspace/lib/usb/libusb.a and the headers are in the include/ subdirectory. All functions,
types and macros are prefixed with usb_ (or USB_) to prevent name clashes with other libraries.

When using the library, add /uspace/lib/usb/include to include path of your compiler. That way,
you would be able to include libusb headers easily. Do not be tempted to add also the usb subdirectory
directly because some files bear very generic names which could lead to confusion with headers from other
libraries. Below is an example of Makefile settings when linking with libusb and part of C source that
includes the base USB types and base definitions of HID class.

LIBS = $(LIBUSB_PREFIX)/libusb.a
EXTRA_CFLAGS += -I$(LIBUSB_PREFIX)/include

#include <usb/usb.h>
#include <usb/classes/hid.h>

Individual functions will be described in chapters regarding writing USB device drivers and writing host
controller drivers. However, for detailed explanation, it is recommended to consult reference documentation
(or, ultimately, the source codes). Below is an overview of functionality available in libusb.

Base USB types Type definitions (mostly aliases through typedef construct) for basic types such as
USB address or endpoint number are present. Although C does not force strong type checking, using
aliases is recommended for purposes of static analysis etc.

They are located in <usb/usb.h>.

Descriptor structures Standard descriptors (device, interface etc.) have their counterpart in libusb.

Descriptors’ structures are located in <usb/descriptor.h> and class specific in appropriate files
in the classes/ subdirectory.
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Actual communication with the device For communication with the physical device, drivers are using
so called ‘pipe API’ that reflects the pipe concept (i.e. data channel with the device) described in
USB specification.

The pipes structures are located in <usb/pipes.h>.

Wrappers for standard device requests Standard device requests, such as retrieval of descriptors, are
implemented as wrappers over low level communication functions. Support for class-specific requests
is limited but is expected to grow as more drivers are being added to HelenOS.

These wrappers are in class-specific headers and in <usb/request.h>.

Logging functions The library offers unified way for reporting errors and for dumping debugging infor-
mation. See below for more details.

10.2 Logging and debugging

Currently, HelenOS lacks any central mechanism for logging system events (such as Unix syslog). To
ensure some kind of forward compatibility, it was decided that all USB related drivers will use the same
mechanism for reporting errors and for logging device events. The whole mechanism is actually only a set
of functions for logging events backed by writing these messages to screen and to a disk file.

The idea is that all events the driver wants to record (and inform the user about) shall be reported via these
functions. That ensures that all drivers use the same format which shall simplify debugging. The logging
itself is done through a single function that takes logging level as a first parameter (see below for levels
description) and remaining parameters are virtually passed as-are to a printf function for actual printing.

There are four levels for basic reporting. They are mostly designed for reporting errors with different
severity levels. They are followed by several levels for debugging messages. The default setting for all
drivers is expected to behave in following way: the four basic levels are always printed to the screen as
they contain vital information and all levels are written to log file in the /log directory. Below is a list of
logging levels with examples for their typical usage.

fatal Highest severity level used for reporting unrecoverable errors of the driver itself. Such messages are
expected to be printed before total failure of the driver.

error Messages with this level reports serious problem with the controlled device, such as inability to
control it. This level shall be used when the driver itself is healthy but is not able to control the
physical device. As a matter of fact, this is the level that is most used in existing drivers because it
is used for reporting error states that would rarely occur, e.g. no memory available or failure during
IPC.

warning Level for reporting issues the driver is able to recover from gracefully. This level could be used
for situations when the driver detects unexpected behavior of the device but is still able to operate it
normally.

info Informational messages reporting (more or less) some success. Typical usage is informing that new
device was attached and is already configured and initialized. This is the last level that is usually
printed to the screen and thus shall be used modestly.

debug , debug2 These levels are used for debugging purposes. There is no strict definition for which
actions each level shall be used. The purpose of more levels is to have the ability to limit the number
of messages printed in some hierarchical way. For actual usage, common sense should prevail.
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10.2.1 Logging API

All function used for logging are part of libusb library, declarations are in <usb/debug.h> header.

Logging is initialized with usb_log_enable() function, first parameter is maximum log level used for
printing to screen (more precisely, to standard output), second is driver name. The name will be used as a
file name for log copy on the disk and as a prefix of messages printed to screen. For example, generic USB
printer driver would be typically initialized like this:

int main(int argc, char *argv)
{

usb_log_enable(USB_LOG_LEVEL_INFO, "usbprinter");

/* Other initializations. */

return ddf_driver_main(&printer_driver);
}

The actual logging is then done using the usb_log_printf(). The first parameter is logging level (see
usb_log_level_t enum). Second argument is a formatting string followed by parameters used in the
formatting string. As a shortcut, macros for individual levels exists (e.g. usb_log_warning(fmt,
...), usb_log_info(fmt, ...)) and their usage is preferred.

/* ... */

void *buffer = malloc(buffer_size);
if (buffer == NULL) {

/* Notice that \n was inserted at the end. */
usb_log_error("Out of memory (requested %zuB).\n",

buffer_size);

/*
* Following command would have exactly the same effect

* but the former is easier to read.

*/
usb_log_printf(USB_LOG_LEVEL_ERROR,

"Out of memory (requested %zuB).\n",
buffer_size);

return;
}

/* ... */

10.2.2 Dumping data buffers

At early stages of developing drivers, the developer often needs to dump data retrieved from the device in
some raw format. For such situation the usb_debug_str_buffer() function is prepared that can be
easily used together with the logging API and that dumps data buffer as a list of hexadecimal numbers.

The function has three parameters — pointer to the data buffer, buffer size in bytes and number of bytes
to actually print (setting 0 as the last parameter is equal for setting the actual buffer size). Internally, the
function is limited to output of only about 200 characters (that is about 60 bytes). If you need more, go into
libusb/src/debug.c and change the value of BUFFER_DUMP_LEN constant.

This is an example of typical usage (however, the buffer would typically contain some dynamic data):
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uint8_t the_data[] = { 1, 2, 15, 32, 60, 0, 17 };
usb_log_debug("Received data: %s.\n",

usb_debug_str_buffer(the_data, 7, 0));
/* Will print "Received data: 01 02 0f 20 3c 00 11." */

General problem with functions dumping variable-length data in C is memory allocation. Both solutions
— string buffer must be prepared by caller or the function will allocate the memory and the caller will
deallocate it — are annoying. Especially when the string is only printed and then forgotten. With usb-
_debug_str_buffer() we decided to sacrifice safety (to some extent) in exchange for simplicity of
usage.

Basically, the function uses static variable for the string and thus consequent calls destroy the previous data.
However, this static string is actually fibril local and thus it is completely safe to use this function even in
multi-fibril programs without any need for explicit locking. Internally, the function uses two buffers and
thus it is possible to call the function twice in the same logging output.

10.3 Conventions on USB match ids

This section describes conventions used by existing drivers for creating device match ids. Match id consists
of two parts — match score and match string. Only match strings will be discussed here because the score
is a matter of each driver — how suitable it is for individual devices.

USB match strings uses formatting similar to query part of URLs. Each match string starts with usb
prefix to separate match strings of USB devices from devices of other kinds. Individual (logical) parts are
separated by ampersands & and for concrete values (e.g. driver for concrete version of a specific device) the
format attribute=value is used.

The match strings are generated in usb_device_create_match_ids_from_device_descrip-
tor() and usb_device_create_match_ids_from_interface() functions (sources in recognise.
c). Below are several examples but the best way for creating driver match strings is to see the actual output
from usbinfo application of a concrete device.

Below is a dump of match strings generated for mass storage interface (hence the interface part) of
Kingston flash disk. The match strings are sorted by their score in decreasing order. Note that almost all
numbers are printed in hexadecimal but always with standard 0x prefix for emphasis.

# The most concrete specification includes vendor, product and release.
usb&vendor=0x0951&product=0x1614&release=1.10&interface&class=mass-storage& ←↩

subclass=0x06&protocol=0x50
# First, generic attributes are dropped (the vendor+product identifies the
# device uniquely anyway)...
usb&vendor=0x0951&product=0x1614&release=1.10&interface&class=mass-storage& ←↩

subclass=0x06
usb&vendor=0x0951&product=0x1614&release=1.10&interface&class=mass-storage
usb&vendor=0x0951&product=0x1614&interface&class=mass-storage&subclass=0x06& ←↩

protocol=0x50
usb&vendor=0x0951&product=0x1614&interface&class=mass-storage&subclass=0x06
usb&vendor=0x0951&product=0x1614&interface&class=mass-storage
# ...then only class identification with vendor id is left...
usb&vendor=0x0951&interface&class=mass-storage&subclass=0x06&protocol=0x50
usb&vendor=0x0951&interface&class=mass-storage&subclass=0x06
usb&vendor=0x0951&interface&class=mass-storage
# ...and the lowest score has generic mass storage device.
usb&interface&class=mass-storage&subclass=0x06&protocol=0x50
usb&interface&class=mass-storage&subclass=0x06
usb&interface&class=mass-storage
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# The fallback match string will force that all devices (interfaces) will
# have a driver attached (otherwise they will not be listed in /dev/devices)
usb&interface&fallback

10.4 Device driver framework interfaces used in USB subsystem

This section describes implementation details in interfaces used for communication between USB drivers.
The communication is done purely using interfaces provided by the Device driver framework. There are
two interfaces for USB drivers: one for host controllers and one for function devices. Their description is
followed by explanation of how the USB device finds the host controller (driver), how it is connected to the
host controller and how it learns its own USB address.

10.4.1 Host controller interface

USB device drivers talk to the physical devices by submitting transfer requests to host controller. This
communication is done through the host controller interface. The interface is used for following kinds of
actions.

• Scheduling transfers on the bus.

• Registering endpoints.

• USB address management.

The transfer scheduling allows USB device to send and receive data from the physical devices.

Each endpoint the driver wants to communicate with must be registered with the host controller. That is
needed to allow host controller to keep track of existing transfers, check bandwidth requirements and it
might be used in the future for more strict permission checking. The endpoint registration is done automat-
ically by the USB framework. The driver lists of expected endpoints and the framework matches them with
the endpoints provided by the device and registers them. Host controllers can use prepared generic data
structures for storing information about registered endpoints.

To allow unique address assignment to attached devices, a single register of used devices must be kept for
each host controller. The host controller then provides means to register a new address or to query whether
the address is in use (this is needed by lsusb).

To allow USB device drivers to determine USB addresses of the devices they control, the host controller
keeps track to which (devman) device handle is each address assigned. This is called address binding and
is done by the hub driver. That introduces a few problems that are described later.

The interface structure with callbacks that is supposed to be used by host controllers is in <usbhc_ifa-
ce.h> (in libdrv) together with IPC protocol details. The actual callbacks are described in more detail
later in chapter about host controllers.

The functions for client side — the device drivers — are in libusbdev and are part of the pipe API.

Note that reservation of default USB address is done by registering an endpoint on it.

10.4.2 USB device interface

The USB interface is currently needed only for device initialization. It must be implemented by all hub
drivers, host controller drivers (see below why) and by drivers functionally similar to the multi-interface
driver.
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The interface is used by each USB device driver to get its assigned USB address, USB interface number
and handle of the host controller driver.

The interface callback structure is in <usb_iface.h> (in libdrv) together with IPC protocol details.

Client side is hidden inside functions initializing the USB framework (usb_device_create()).

How the interface is actually used is described in next section.

10.4.3 Finding host controller and own address

When a driver for a USB device is created, it needs to learn what is its parent (which host controller) and
what is its USB address. However the only driver it can connect to is its immediate parent, what is typically
a hub. Thus the request needs to be forwarded and in some cases changed a bit to end with correct response.

The simplest problem is getting devman handle of the parent host controller. The device connects to the
parent device driver and asks for it. The parent driver either has it cached or forwards the requests to its
parent. This ends in the host controller driver that also must implement this method where it returns its own
handle (more precisely, the handle of the DDF function implementing the USBHC interface).

Getting the assigned USB address is more problematic. As it was already mentioned above, the hub driver
binds the USB address with a device handle assigned by devman. However, this handle is an ID of internal
node existing inside the hub driver. The actual device node (controlled by the driver in question) has a
different handle. That means that a driver cannot directly ask a host controller and give it its own handle.
Such handle would not be found and the request would end with error. Thus the driver asks its immediate
parent for it. The parent then inserts the correct value (it is the handle of the function to which the request
came) and forwards the request.

Such request could be forwarded several times in which case the handle would be overwritten in each hub
driver and the address of the topmost hub would be returned always. A special value zero is used to prevent
that. If the interface method receives non zero value, it is supposed to forward it without any changes. For
zero it shall substitute it with its own handle and forward it.

The multi-interface driver needs to look like another hub for each of the interface drivers and forward the
requests to the real hub driver. Thus it is an exception to the ‘zero substitute’ rule as its forwards the zero
because the MID device node handle is not the correct one. The correct one is substituted by its parent
driver.

Most of the USB devices define their functionality at interface level. The MID driver takes care of that
by creating a new device node and starting the appropriate driver for each interface. These drivers then
operate on single interface only. Because single device can have several interfaces of the same kind, thus all
controlled by the same driver, it is necessary to ensure that the driver would control only its own interface.
This interface number is returned by the MID driver by a special interface method.

When developing a hub driver, one can use the prepared implementations of the interface methods from
<usb/ddfiface.h> in libusb. The client side is part of the pipe API.
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Chapter 11

Virtual USB devices layer

To speed-up development of device drivers at the beginning of the USB project a program simulating
USB keyboard was written. The program was accompanied with virtual host controller and was originally
intended as a temporary hack that would be removed when drivers for real hardware are ready. However the
virtual USB keyboard can be used for testing the HID driver and thus the virtual host controller remained
and this chapter describes its design and way how to write simulated USB devices.

The subsystem for virtual USB devices consists of two parts. First, it is the virtual host controller simulat-
ing a hardware host controller and next it contains applications simulating the devices. In order to make
both parts smaller and thus more easily maintainable, the virtual devices are all standalone applications
communicating through IPC with the virtual host controller.

The interface for communication between (simulated) host controller and device is described below.

11.1 Virtual host controller

The virtual host controller is a userspace application that provides two different interfaces. The first interface
is towards USB device drivers where the program offers the same functionality as must be provided by any
USB host controller driver in HelenOS. The second interface is for virtual devices and can be thought of as
a simulation of the bus. The application can be also logically divided into two parts — hardware simulator
(more or less) and a driver for the simulator.

Unlike real (i.e. hardware) host controllers, the virtual one does not work with transactions but only with
transfers. Although originally the host controller split the transfers into individual SETUP, OUT and IN
transactions, the idea was later abandoned because it complicated both the virtual host controller as well as
the virtual devices. This can be thought of as a major difference but this difference is in no way propagated
to the device drivers and simplifies the implementation a lot.

Part of the host controller is also a root hub that is driven by the hub driver [p. 36]. The simulated devices
then appear as being plugged into the root hub.

11.2 Virtual devices

Virtual USB devices are userspace applications that simulate a life of a real USB device. When they are
started, they connect to the virtual host controller and announce their presence. The root hub then simulates
a change on the port and it is up to the hub driver to inform the device manager that new device was
discovered. Later, virtual host controller would send transfers to the virtual device that shall answer them.
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The idea is that the application simulating the real device would contain some state automaton describing
the status of the device. The status could be changed by two ways: by itself or by the driver. For example,
human interface devices would change by themselves, thus simulating human interaction and the driver
only asks for current status. But simulator for mass storage would keep list of blocks and would change
their content by commands from the driver and would not create any activity by its own.

The actual communication is done through IPC. The virtual device initiates the connection by connecting
(via devman) to the virtual host controller that is expected to have always the same device path (/virt/
usbhc/hc). The device then asks for a callback phone to allow host controller to initiate transfers. This
way, the master-slave nature of USB is preserved even on the virtual layer.

11.2.1 Writing your own simulated device

If you want to write your own simulated USB device, this section will give you an overview what the l-
ibusbvirt offers and how to create such device. In this section it is expected that you know the USB
architecture and terms well and the focus is on writing the actual device.

All functions and types needed for virtual USB are in libusbvirt library, to use it in your application
do not forget to add following directives to your Makefile:

LIBS = $(LIBUSBVIRT_PREFIX)/libusbvirt.a
EXTRA_CFLAGS = -I$(LIBUSBVIRT_PREFIX)/include

The headers then appear in usbvirt directory.

The virtual device is represented by usbvirt_device_t structure. This structures contains device name
(used for debugging messages), pointers to the ‘ops’ structure (usbvirt_device_ops_t) and pointer
to device descriptors.

The device operations are callbacks that are executed when there are data on the virtual bus belonging to
this device. The callbacks for default control endpoint are initialized differently than callbacks for normal
data endpoints. The callback for control transfer — represented by usbvirt_control_request_h-
andler_t— specifies the nature of the request (e.g. whether it is a standard or a class one) and the actual
callback. There is an array of these callbacks, the last item must have handler set to NULL (and thus is
ignored when looking for suitable handlers). Data callbacks are much simpler: for both in and out transfers
there exists an array indexed by endpoint number where you register the callback.

The library itself implements several standard control handlers that take care of returning descriptors (see
below) and setting device address. They can serve as an example of how the callbacks are specified:

usbvirt_control_request_handler_t library_handlers[] = {
{

.req_direction = USB_DIRECTION_OUT,

.req_recipient = USB_REQUEST_RECIPIENT_DEVICE,

.req_type = USB_REQUEST_TYPE_STANDARD,

.request = USB_DEVREQ_SET_ADDRESS,

.name = "SetAddress",

.callback = req_set_address
},
{

.req_direction = USB_DIRECTION_IN,

.req_recipient = USB_REQUEST_RECIPIENT_DEVICE,

.req_type = USB_REQUEST_TYPE_STANDARD,

.request = USB_DEVREQ_GET_DESCRIPTOR,

.name = "GetDescriptor",

.callback = req_get_descriptor
},
{

.req_direction = USB_DIRECTION_OUT,
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.req_recipient = USB_REQUEST_RECIPIENT_DEVICE,

.req_type = USB_REQUEST_TYPE_STANDARD,

.request = USB_DEVREQ_SET_CONFIGURATION,

.name = "SetConfiguration",

.callback = req_set_configuration
},

{ .callback = NULL }
};

The data buffers passed to the callbacks are always allocated and deallocated by the caller and their data
size is always provided. For transfers from device to host, you are expected to write the relevant data to
these buffers and write how many bytes you actually wrote. For control read transfers, a simple helper
exists usbvirt_control_reply_helper() that takes care of buffer size checking.

Each USB device is identified by contents of its descriptors. These descriptors are in virtual USB repre-
sented by usbvirt_descriptors_t structure that contains the standard device descriptor (the struc-
ture is defined in libusb) and pointer to configuration. The configuration contains the actual configuration
descriptor and a list of other descriptors that shall be returned together with it. Typically, you will put inter-
face and endpoint descriptors into this array. The ordering in the array is respected when data are returned
to the driver.

Below is an example from virtual root hub of how the descriptors could be prepared. The actual descriptors
are not shown, see uspace/drv/vhc/hub/virthub.c for complete source code.

static usbvirt_device_configuration_extras_t extra_descriptors[] = {
{

/* usb_standard_interface_descriptor_t */
.data = (uint8_t *) &std_interface_descriptor,
.length = sizeof(std_interface_descriptor)

},
{

/* hub_descriptor_t (private in virtual host controller) */
.data = (uint8_t *) &hub_descriptor,
.length = sizeof(hub_descriptor)

},
{

/* usb_standard_endpoint_descriptor_t */
.data = (uint8_t *) &endpoint_descriptor,
.length = sizeof(endpoint_descriptor)

}
};

static usbvirt_device_configuration_t configuration = {
/* usb_standard_configuration_descriptor_t */
.descriptor = &std_configuration_descriptor,
.extra = extra_descriptors,
.extra_count = sizeof(extra_descriptors)/sizeof(extra_descriptors ←↩

[0])
};

static usbvirt_descriptors_t descriptors = {
/* usb_standard_device_descriptor_t */
.device = &std_device_descriptor,
.configuration = &configuration,
.configuration_count = 1,

};

Typically, all described structures will be prepared statically and in the main() function, the device will
only register itself with the virtual host controller. That is done using the usbvirt_device_plug()
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function that simulates attachment of a new device. Please notice that it is not possible to control more
virtual USB devices from single application.

After the simulated device is plugged in, the respective driver will try to control the device and the callbacks
would be fired. Meanwhile, the application shall simulate the life-cycle of the device, possible indepen-
dently on the driver.

For example, a simulated human interface device can spawn a fibril that would change list of pressed keys
with specified delay and the actual callback for data retrieval will simply return current state of the keyboard
buffer. The actual code of the callback then could look like this (we omit locking as not much harm can be
done — after all it is only about reading).

#define INPUT_SIZE 8
/* Array of pressed key events (schedule) in groups of INPUT_SIZE items */
static uint8_t in_data[] = {

...
};
/* Number of events. */
static size_t in_data_count = sizeof(in_data)/INPUT_SIZE;
/* Start reading at in_data_position * INPUT_SIZE. */
static size_t in_data_position = 0;

/* The actual callback. */
static int on_data_in(usbvirt_device_t *dev,

usb_endpoint_t endpoint, usb_transfer_type_t tr_type,
void *buffer, size_t buffer_size, size_t *actual_size)

{
/* We shall verify that endpoint and tr_type has correct values. */

static size_t last_pos = (size_t) -1;
size_t pos = in_data_position;
if (pos >= in_data_count) {

/* Announce that the keyboard is gone. */
return EBADCHECKSUM;

}

/* No new data, NAK the request. */
if (last_pos == pos) {

return ENAK;
}

if (buffer_size > INPUT_SIZE) {
buffer_size = INPUT_SIZE;

}
if (act_buffer_size != NULL) {

*act_buffer_size = buffer_size;
}

/* Simply copy the data to the buffer and update last position. */
memcpy(buffer, in_data + pos * INPUT_SIZE, buffer_size);
last_pos = pos;

return EOK;
}
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11.3 Virtual HID

The virtual HID is currently the only application that simulates a USB device (except for the root hub in the
virtual host controller). Its main purpose is thorough testing of the HID parser that has to deal with complex
Report descriptors.

The application was designed to be easily extensible. It is easy to add a new USB interface with a special
report descriptor. Each interface then defines callbacks for data setting and retrieval and a special callback
for simulating actions.

The application is located in uspace/app/vuhid and is launched with vuh command, parameters being
names of interfaces the new device shall have.

If you want to extend the virtual HID with your own interface, probably the easiest way is to copy the
existing interface and change it to your own needs. The simplest one is the one for boot protocol keyboard
that is located in uspace/app/vuhid/hids/bootkbd.c. The interface is represented by vuhid_-
interface_t structure, the individual attributes are described in the reference documentation. Once you
prepare this interface, you add it to the list in ifaces.h and in ifaces.c.

You can then launch your new interface by specifying its name on the command line when starting the vuh
application.
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Chapter 12

Writing USB device drivers

This chapter will guide you through the process of writing driver for a USB device. It describes how to use
the USB framework and functions that are available as part of the USB library.

12.1 Quick overview

This section and the next one will provide a high-level overview of the framework for writing device drivers.
The following section will then guide you through the low-level details using simple mouse driver as an
example.

12.1.1 The framework

The USB device drivers are using the generic device driver framework available in HelenOS. Because all
USB drivers have similar initialization routines, a thin layer — specific to USB devices — was added above
the generic one.

This layer extends the generic one with possibility to initialize endpoint pipes that will be needed by the
driver. The author of the driver specifies which endpoints shall be present on the device through a USB
driver structure and when new device is found, a specialized device structure is prepared and the pipes
abstractions are initialized.

The driver itself lives the same life-cycle as any other driver controlled by devman. The generic framework
does not support device unplugging yet. Although the USB hub drivers are able to detect device unplug,
no special action is taken on the side of the drivers of the removed device because the backing framework
is not able to handle such situation. Because of this, device drivers shall use some simple heuristics to stop
controlling a device once there were several consecutive failed attempts to communicate with it.

12.1.2 Using the pipes

In USB, pipe is a basic abstraction for communication channel between a device and a host computer. Such
channels have their representation in HelenOS as well. When using the provided framework, such pipes
will be initialized for you and you can start using them right away.

Although the USB library is trying to hide low-level details of the IPC communication among tasks, there
are areas when that is not completely possible. The pipes are used for transferring data from device to host
(or vice versa) and thus they must be first transferred to (or from) the driver of the host controller. Such
transfers involve IPC. The IPC is initiated through kernel and each open connection must be backed by
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some kernel structure. Because of this, inter-task connection shall be considered expensive and thus pipes
must open this connection before transferring the data and close it after the transfer is complete. This is
done by using sessions on the pipes.

Session is an open connection to the host controller driver and must be started before transferring data and
shall be closed once the transfer is complete. Only when a session on a pipe is opened, it is possible to use
the pipe for data transfer.

The pipe functions for data transfers always operate on data buffers provided by the user and they never
allocate memory on their own.

Last thing that needs to be mentioned is the asynchronous nature of the transfer functions. For the program-
mer, all operations on pipes are blocking: execution will not return from the function before the requested
operation is completed. However, drivers are using the asynchronous framework and are using fibrils.
Thus, the function is blocking but may cause a fibril context switch and thus it is necessary to use fibril
synchronization primitives when accessing shared data structures.

12.1.3 Automatic polling

Most input device drivers work in a similar manner. They keep polling the device for data and process the
data when there are some. Translated into the code, it means writing an endless loop that opens a session
over some interrupt in pipe, requests the in data transfer, closes the session and processes the data. For such
situations, a wrapper function was created that takes care of the common code.

12.1.4 Adding child devices

Each device driver in device driver framework may create a child device that could be controlled by another
driver. In USB, such child spawning comes in two flavors. First is a ‘hub case’ when hub or similar device
detects new physical device. Second case is the MID driver one where the same physical device is run by
several drivers (e.g. interface drivers).

The second case is not USB specific and functions provided by the libdrv shall be used. Namely ddf-
_fun_create() and ddf_fun_bind().

For hubs, the device adding routine is part of bus enumeration [p. 10]. The enumeration is quite complex
process and a special wrapper usb_hc_new_device_wrapper() exists in libusbdev. The func-
tion has a lot of parameters that are described in the reference manual in more detail. Most of them are
rather auxiliary ones needed for proper functioning of the device driver framework.

One of the most important parameter is a callback for enabling a port. This callback must ensure that
after its execution, the new device is accessible via default USB address. It is important to notice that this
function is blocking (that is the reason why hub driver spawns a new fibril and uses a condition variable to
return from the ‘enable port’ callback).

This wrapper is used both by the hub driver and by the UHCI root hub driver.

12.2 The API

This section will describe the API that was described in previous sections. The initialization is described
below through an example for USB mouse because it is more understandable that way.
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12.2.1 Pipes

The pipe is represented by usb_pipe_t structure and is initialized for you by the framework. However, if
you want to initialize it manually, you first need to prepare a backing connection to the device —usb_de-
vice_connection_t— that represents the USB wire. Once you initialize the connection (typically by
usb_device_connection_initialize_from_device()), you can initialize the pipe: for the
default control pipe, there is a special function usb_pipe_initialize_default_control(), for
other pipes you would use usb_pipe_initialize().

To transfer the data over the pipe, a session on it must be started. That is done through the usb_pipe-
_start_session() function. The session is then closed by usb_pipe_end_session(). Both of
these functions return error code but under normal circumstances, they shall succeed. Unless the pipe is not
properly initialized, the function for starting a session will fail only if the host controller driver task died
(or refuses connection) or the driver used all kernel resources dedicated for maintaining IPC. The first error
is fatal but when something similar happens, the system is going down anyway and you cannot do much
about it. Remedy for second kind of error is to close sessions as soon as possible.

The data transfer is done using usb_pipe_read() for in transfers (from device to host) and usb_pip-
e_write() for out transfers. Both of these functions expects a pipe with started session and a data buffer
as parameters. The data buffer for out transfers must be already in USB endianness. Beware, some functions
accept data in native endianness. The expected endianness is always stated in the reference documentation,
next to parameter explanation.

Control transfers have their own functions for issuing transfers because these transfers could be bidirec-
tional. For control read transfer, function usb_pipe_control_read() is ready, for write transfers
there is usb_pipe_control_write().

Functions described above are all part of the <usb/pipes.h>.

12.2.2 Automatic polling

For automatic polling, function usb_device_auto_poll() is available (in <usb/devdrv.h>). The
function has quite a lot of parameters to allow as generic usage as possible. The obvious parameters are the
pipe that is used for polling and the device to which the pipe belongs.

The next parameter is a callback that is issued when the transfer is complete. Parameters for the callback
is the device that returned the data, data buffer and size of this buffer. The callback shall not try to destroy
(e.g. deallocate) the buffer, that is responsibility of the callback. Since the generic routine does not do any
parsing, the buffer is passed in USB endianness. The callback returns a boolean type determining whether
the polling shall continue. Returning false will immediately terminate the polling loop.

The function has a second callback that is issued when the polling loop is terminated. The first argument
is again the device followed by boolean specifying whether the termination was due to user (i. e. false
returned from the first callback) or due to errors when communicating with the device. This callback can
be set to NULL when the driver does not need to perform any action after termination of the polling.

The function accepts one more argument — a generic pointer that is passed as-is to both callbacks. This
argument is useful for any user data and can be NULL.

The function spawns a new fibril and then returns, the return value indicates success. It is important to know
that the new fibril — the polling one — may start execution even before the usb_device_auto_poll-
() returns. Thus, it is necessary to prepare all data structures and locking primitives prior to the call to this
function.

12.3 Guide for creating simple USB mouse driver

This section will guide you through the process of creating a very simple, yet functional, mouse driver.
Because the focus of the chapter is the USB part of the driver, we will omit how the retrieved data of the
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mouse would be used to actually move some pointer around the screen.

The mouse driver is part of the HelenOS distribution and used file paths refers to its actual placement within
HelenOS source distribution.

12.3.1 Preparing the driver

The first steps when creating a driver are to create separate directory and to add this directory to HelenOS
build scripts.

We will use /uspace/drv/usbmouse directory and we need to add corresponding entries to /uspace/
Makefile (variable DIRS) and boot Makefiles (/boot/Makefile.common and architecture specific
files /boot/arch/*/Makefile.inc.

Next, we need to create a file with match ids for the driver. Because we want to have the driver as simple
as possible, we will focus only on devices supporting boot protocol. Such devices (device interfaces) must
specify that the subclass is of a boot type and a mouse protocol. The match id created thus must have the
following value (it needs to be stored in /uspace/drv/usbmouse/usbmouse.ma):

100 usb&interface&class=HID&subclass=0x01&protocol=0x02

You can also use the usbinfo application to print match ids of a certain device. Unless you are using
some special mouse, this line (with different score) will be part of the output.

12.3.2 Driver initialization

The main() function of a USB driver is usually a very short routine that could consist of a single function
call (usb_driver_main()) giving the control to the underlying framework to handle the rest. However,
the argument to this function describes the driver and the devices it will control and its preparation requires
explanation.

The argument passed is an instance of usb_driver_t which has two major items: driver operations and
description of pipes the driver will use. The operations is a usb_driver_ops_t structure with callback
that is executed when new device is about to be controlled by the driver. This function will be described
later. The second part, pipes description, specifies which pipes shall be initialized by the framework.

The actual initialization is done by reading various device descriptors and then mapping them onto the
driver expectations. That is because the device may actually have more pipes etc. (e.g. for some vendor
specific functions).

The pipes are then available through the usb_device_t structure that is passed as an argument to the
callback when new device is added. This structure will be described later.

Below is an excerpt from the mouse driver that specifies that the mouse must have an Interrupt In pipe that
must be part of HID interface describing a mouse with boot capabilities.

#include <usb/usb.h>
#include <usb/pipes.h>
#include <usb/classes/classes.h>
#include <usb/classes/hid.h>

usb_endpoint_description_t poll_endpoint_description = {
.transfer_type = USB_TRANSFER_INTERRUPT,
.direction = USB_DIRECTION_IN,
.interface_class = USB_CLASS_HID,
.interface_subclass = USB_HID_SUBCLASS_BOOT,
.interface_protocol = USB_HID_PROTOCOL_MOUSE,
.flags = 0

};
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When you will be writing your own device driver, you will read the pipes specification from the data sheet
of the actual device or from generic specification of a USB class.

Preparing the driver structure is then straightforward. The implementation of the usbmouse_add_dev-
ice() will be described in next section.

#include <usb/usb.h>
#include <usb/devdrv.h>

/* Driver name (the same as the directory where it resides).

* Using NAME is only a convention but it is widely used in many HelenOS

* services. */
#define NAME "usbmouse"

/* Callback when new device is to be controlled by this driver. */
static int usbmouse_add_device(usb_device_t *);

/* Currently, the framework supports only device adding. Once the framework

* supports unplug, more callbacks will be added. */
static usb_driver_ops_t mouse_driver_ops = {

.add_device = usbmouse_add_device,
};

/* Array of endpoints expected on the device, NULL terminated. */
static usb_endpoint_description_t *endpoints[] = {

&poll_endpoint_description,
NULL

};

/* The driver itself. */
static usb_driver_t mouse_driver = {

.name = NAME,

.ops = &mouse_driver_ops,

.endpoints = endpoints
};

/* Main task routine. */
int main(int argc, char *argv[])
{

/* Initialize the logging to some high value for debugging purposes. ←↩
*/

usb_log_enable(USB_LOG_LEVEL_DEBUG, NAME);

return usb_driver_main(&mouse_driver);
}

12.3.3 Device adding routine

The framework calls the usb_driver_ops_t.add_device() when new device was plugged to the
machine and by match ids it seems that the device shall be controlled by the driver.

The function has a single argument —usb_device_t structure representing the new device. This struc-
ture contains the already initialized pipes as they were described in the driver structure.

This routine is the place to create device functions and to bind interfaces with the device.

For the mouse, it can be actually very simple:

#include <usb/dev/driver.h>
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#include <usb/hid/request.h>
#include <usb/debug.h>

static int usbmouse_add_device(usb_device_t *dev)
{

/* Create the function exposed under /dev/devices. */
ddf_fun_t *mouse_fun = ddf_fun_create(dev->ddf_dev,

fun_exposed, "mouse");
if (mouse_fun == NULL) {

return ENOMEM;
}
int rc = ddf_fun_bind(mouse_fun);
if (rc != EOK) {

ddf_fun_destroy(mouse_fun);
}

/* Add the function to mouse class (ignore errors here). */
ddf_fun_add_to_class(mouse_fun, "mouse");

/* Set the boot protocol. */
rc = usbhid_req_set_protocol(&dev->ctrl_pipe, dev->interface_no,

USB_HID_PROTOCOL_BOOT);
if (rc != EOK) {

/* This is probably not crucial. If the mouse does not

* know how to handle this request, it is probably

* a boot-only mouse and we are safe anyway. */
usb_log_warn("Mouse refuse to switch to boot mode.\n");

}

/* Start automated polling function.

* This will create a separate fibril that will query the device

* for the data continuously */.
rc = usb_device_auto_poll(dev,

/* Index of the polling pipe. */
0,
/* Callback when data arrives. */
usb_mouse_polling_callback,
/* How much data to request. */
dev->pipes[0].pipe->max_packet_size,
/* Callback when the polling ends. */
usb_mouse_polling_ended_callback,
/* Custom argument. */
NULL);

if (rc != EOK) {
usb_log_error("Failed to start polling fibril: %s.\n",

str_error(rc));
ddf_fun_destroy(mouse_fun);
return rc;

}

usb_log_info("controlling new mouse (handle %llu).\n",
dev->ddf_dev->handle);

return EOK;
}

As you can see, everything is quite simple — the pipes are prepared as a pipes array using the same order
as in the endpoint description and for mouse we only started the automatic polling.
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12.3.4 Bypassing the framework

The USB-specific routine for adding USB devices has one disadvantage. There is no way you can possibly
combine two different frameworks that use such customization. Thus the USB framework allows bypassing
of this mechanism.

That is done in following way. You use the standard device driver framework with its add_device()
callback and you create the USB device — represented by usb_device_t— manually. The callback for
adding new device could look like this:

int my_add_device(ddf_dev_t *dev)
{

int rc;

/* Initialize the USB device. */
usb_device_t *usb_dev = NULL;
const char *err_msg = NULL;
rc = usb_device_create(dev, endpoint_description, &usb_dev, &err_msg ←↩

);
if (rc != EOK) {

usb_log_error("Failed to create USB device ‘%s’ (%s): %s.\n" ←↩
,
gen_dev->name, err_msg, str_error(rc));

return rc;
}

/* Initialize the other framework. */
...

/* Tell devman the driver accepts this device. */
return EOK;

}

The libusbdev library allows even more fine-grained customization or bypassing of the framework.

For example, it is possible to initialize the pipes without creating container USB device or to retrieve
standard descriptors manually. The library allows to change interface setting to an alternative one using the
usb_device_select_interface() function. However as stated before, alternate interfaces were
so far never tested and the implementation might contain minor bugs.

For details, consult the reference documentation. Such functions are located in <usb/dev/driver.h>.

12.3.5 Processing the data

This tutorial does not cover sending events to the system about pointer movements, we will shorten the
callback to merely printing data it received.

Then, it is extremely simple:

/* Returning false means "stop the polling". */
bool usb_mouse_polling_callback(usb_device_t *dev,

uint8_t *buffer, size_t buffer_size, void *arg)
{

usb_log_debug("got buffer: %s.\n",
usb_debug_str_buffer(buffer, buffer_size, 0));

/* Print which buttons are pressed. */
uint8_t butt = buffer[0];
char str_buttons[4] = {
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butt & 1 ? ’#’ : ’.’,
butt & 2 ? ’#’ : ’.’,
butt & 4 ? ’#’ : ’.’,
0

};

/* Count pointer movement. */
int shift_x = ((int) buffer[1]) - 127;
int shift_y = ((int) buffer[2]) - 127;
int wheel = ((int) buffer[3]) - 127;

/* Handle special cases. */
if (buffer[1] == 0) {

shift_x = 0;
}
if (buffer[2] == 0) {

shift_y = 0;
}
if (buffer[3] == 0) {

wheel = 0;
}

usb_log_info("buttons=%s dX=%+3d dY=%+3d wheel=%+3d\n",
str_buttons, shift_x, shift_y, wheel);

/* We do not want to poll the device continuously.

* Sleep for 1ms to allow the device some rest ;-). */
async_usleep(1000);

/* Tell the routine to continue polling. */
return true;

}

12.4 Standard requests

The USB specification describes several control requests each device must respond to. These requests are
used to query status of the device or for retrieval of device descriptors. These requests are very common and
wrappers for them were created. The wrappers have declarations in <usb/request.h>, for parameters
description consult the reference manual.

12.5 Standard descriptors

For most of standard USB descriptors there exist C struct counterparts in libusb. Generic structures (used
by all devices) are stored in <usb/descriptor.h>. For class-specific descriptors, see corresponding
files in classes subdirectory.

If you will create your own descriptors (e.g. vendor specific), do not forget that compiler will typically try
to align the structure and adding __attribute__(packed) is necessary (although non-standard, this
attribute is supported by most compilers).
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12.6 Parser of USB descriptors

It was already mentioned [p. 9] that USB descriptors can be viewed as a tree but they are sometimes stored in
a serialized manner. For example, configuration descriptor is followed by interface and endpoint descriptors
and there is no way to retrieve these directly. A simple parser was created for deserialization purposes.

The parser tries to be as generic as possible and thus the interface it provides is somewhat terse. It operates
on byte array and offers only functions for finding first nested descriptor and for finding next sibling (i.e.
descriptor on the same depth of nesting).

The parser expects that the input is an array of bytes where the descriptors are sorted in ‘prefix tree traversal’
order (see descriptor tree figure [p. 10]). Next, it expects that each descriptor has its length stored in the
first byte and the descriptor type in the second byte. That corresponds to standard descriptors layout.

The parser determines the nesting from a list of parent-child pairs that is given to it during parser initializa-
tion. This list is terminated with pair where both parent and child are set to -1.

The parser structures and functions are stored in <usb/dp.h>. The parser itself uses usb_dp_parse-
r_t structure. Currently it only contains array with possible descriptor nesting (usb_dp_descripto-
r_nesting_t). The data for the parser are then stored in usb_dp_parser_data_t, the arg field is
intended for custom data.

For processing the actual data, two functions are available. The usb_dp_get_nested_descript-
or() takes parser, parser data and pointer to parent as parameters. For retrieving sibling descriptor (i.e.
descriptor at the same depth) one can use usb_dp_get_sibling_descriptor(). This function
also takes parser and parser data as parameters. But it requires two extra arguments — pointer to the parent
descriptor (i.e. parent of both nested ones) and pointer to the preceding descriptor. The mentioned pointer
must always point to the first byte of the descriptor (i.e. to the length of the descriptor, not to its type).

There is also a simple iterator over the descriptors. The function usb_dp_walk_simple() takes a
callback as a parameter. This callback is then executed for each found descriptor and it receives current
depth (starting with 0) and pointer to current descriptor. For other parameters, see reference manual.
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Chapter 13

Writing HID drivers and subdrivers

13.1 USB HID library

To ease writing of HID drivers and subdrivers, all the common functionality was separated into the li-
busbhid library, located in /uspace/lib/usbhid/. Its funcions may be divided into few logical
units:

Class-specific requests Functions for all HID class-specific requests are available, i.e. Get/Set Report,
Get/Set Protocol and Get/Set Idle. For details about these requests, see the HID Specification1, part
7.2. These functions can be found in <usb/hid/request.h>.

Report and report descriptor parsing This unit is more thoroughly described below [p. 66].

Usages’ definitions and other constants These include constants for various Usage pages and usages
from them (only those needed for the development; extending them is straightforward), located in the
usages/ subdirectory as well as other constants from the HID specification (located in <usb/h-
id/hid.h>).

HID interface for third-party applications This is the interface third-party applications can use to re-
trieve data from the HID driver. More detailed description can be found in Generic HID sub-
driver [p. 44].

13.1.1 Report and report descriptor parsing

HID devices communicate with the host in form of so-called Reports. Definitions of these reports are read
from the Report Descriptor (see Standard USB Descriptors [p. 65]). HID parser is divided into two parts. At
first, the report descriptor is parsed in HID Report Descriptor Parser. Later, particular reports are parsed
using HID Report Parser. Both parts share one report structure for information interchange.

13.1.1.1 HID Report Descriptor Parser

HID Report Descriptor Parser reads and parses the Report Descriptor. For detailed information about Report
Descriptor’s format see the USB HID Class definition, part 6.2.2.

USB HID devices recognize three types of reports:

• Input Reports — host receives data from device
1http://www.usb.org/developers/devclass_docs/HID1_11.pdf

http://www.usb.org/developers/devclass_docs/HID1_11.pdf
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• Output Reports — host sends data to device

• Feature Reports — host sends configuration information to the device. These reports are not supported.
They are correctly parsed from report descriptor but API for using them is missing.

Device could have more than one report of each type. In such case, Report ID must be set to identify the
report. Using report IDs is mandatory for all reports if there are more reports for any type or if there is any
report using report ID. In other cases, they could be ommited. Zero is not a valid report ID value and means
that report ID is not used.

HID Report Descriptor Parser can be found in usb/hid/hiddescriptor.h. There is the main func-
tion of the parser usb_hid_parse_report_descriptor(). It takes the raw descriptor data (byte
array) and fills the opaque report structure (usb_hid_report_t). This structure is then used for pro-
cessing of all reports for the device.

Except this main function, there are also simple iterators over reports and their data fields. Function usb-
_hid_get_next_report_id returns next report ID in the report structure to the given one. For listing
all data fields of one particular report, there is usb_hid_get_sibling() function, which takes Usage
path and pointer to the data field as parameter (or NULL) and returns the next one (or first one if NULL is
given). Unlike usb_dp_walk_simple() for standard USB descriptors, there is no callback. Both these
function can be found in usb/hid/hidparser.h. For other parameters, see reference manual.

13.1.1.2 Usage paths

In report descriptor, all data fields are organized into a tree structure of Collections, which are in fact only
logical units packing some data fields together. Data fields can be only at the leaf level of the tree structure.
Each collection (as well as data fields) has a Usage and Usage page assigned. Unlike the data fields, this
pair of Usage and Usage page cannot be changed.

Pair of Usage and Usage page defines the meaning of field’s data (e.g. mouse X axis movement). All of
these Usages from root of the report descriptor up to the leaves create Usage path and each data field has
one Usage path assigned. Drivers can use these Usage paths retrieve only specific data. There are five
modes of Usage paths matching:

• Strict mode — Usage paths must be identical.

• Begin mode — Usage path specified by the driver must be prefix of the path provided by the device.

• End mode — Like Begin, must path must be suffix.

• Usage page only mode — only Usage pages in Usage paths are compared. Must be combined with either
Begin or End mode.

• Anywhere mode — is limited to length of searched path to 1. Match if searching path contains the
searched one at any level.

It is very recomended to use Begin mode, optionaly combined with the Usage page only one. The others
are harder to use. If there are Array items in report, Usage paths related to these items end by pair of null
Usage and null Usage page, because they depend on particular reports and they are filled after the report is
parsed. These null Usages match all others (because of the cost of testing all possible Usages). In Begin
mode driver can search only some particular Collections on upper levels.

The report ID can also be specified in the Usage path. Then the path can be matched only to a Usage path
belonging to appropriate report. Report IDs are not considered when zero report ID is given. All functions
working with Usage paths can be found in usb/hid/hidpath.h.
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13.1.1.3 HID Report parser

HID Report parser uses the previously filled Report structure and makes value translation between logical
units, used by the device, and physical units, used by the host. Also fills in (in case of Input reports) the
correct Usage and Usage page for data fields if needed (only Array items change the Usage and Usage page
according to the processed data).

The usb_hid_parse_report() takes report structure and raw report as parameters and fills the found
values to the report structure. Driver can pick up the data using the iterator.

On the other hand, function usb_hid_report_output_translate() picks up data from the report
structure and fills the output report buffer.

In Reports, two types of data fields can be recognized:

• Variable items — values of these fields represent value of some physical control. For example, a mouse
movement in X axis. These fields have its Usage and Usage page fixed.

• Array items — values of these fields represent index to the array of possible Usages. Array items can be
used only for detecting presence of some event — pressing a key for example. Its Usage and Usage page
can (and will) be changed as another report comes.

Each data field has also flag if it is constant or variable. Value of Constant data fields cannot be changed
neither by host nor by device. HID Report parser skips constant fields in usb_hid_get_sibling().

For details about Usages and Usage pages see Usage Table specification 2.

13.2 Writing HID subdrivers

The easiest way to improve support of HID devices in HelenOS would be to utilize the available facilities
provided by the HID driver and the HID framework (see above) and to write a subdriver for handling a
particular type of device. This comprises two steps:

1. Specifying the type of device, or type of data it must provide in order to be controlled by this sub-
driver. This is done by filling in the usb_hid_subdriver_mapping_t structure (see <usb/h-
id/subdrivers.h>) and adding it to the usb_hid_subdrivers array in subdrivers.c.

2. Implementing callbacks for several situations the HID driver may encounter. (Note that any of the
callbacks may be set to NULL if no special handling of such situation is required.)

a. Initialization (usb_hid_driver_init_t) — this callback will be executed after the HID
device structure (usb_hid_driver_poll) is initialized. The subdriver may do any ini-
tialization of its own structures, or of the device (with which it can communicate using the
usb_device_t structure stored inside the HID device structure.

b. New data from device (usb_hid_driver_poll_t) — this function will be called when
there are new data ready at the device.

c. Polling ended (usb_hid_driver_poll_ended_t) — the polling of the device was termi-
nated.

d. Deinitialization (usb_hid_driver_deinit_t) — called when the driver is destroying the
HID device structure.

These callbacks are grouped into a structure representing the subdriver (usb_hid_subdriver_-
t), together with a data pointer to store any subdriver-specific data. This structure is also part of the
mapping mentioned above, so that the mapping maps the callbacks to the particular device.

2http://www.usb.org/developers/devclass_docs/Hut1_12.pdf

http://www.usb.org/developers/devclass_docs/Hut1_12.pdf
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The subdriver source files must be then added to the HID driver Makefile in order to be compiled into
the driver. When this is accomplished, the HID driver will try to match any device it is supposed to control,
to this subdriver. All the callbacks will receive the HID device structure as the first parameter, i.e. they will
have direct access to the data about the device, as well as the incoming reports (stored in the structure as
well).

13.3 Writing HID drivers

In case the options provided by the subdriver system are for any reasons not satisfactory, or if the imple-
mentor does not wish to leave the polling to the libusbdev library, it is also possible to write a whole
separate driver for any kind of HID device, with the help of the USB HID library [p. 66]. In such case, the
driver must specify the match IDs (see conventions [p. 49]) appropriately, so that it will be launched by the
DDF.

A simple example is the mouse driver mentioned in the previous chapter [p. 59].
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Chapter 14

Writing USB host controller drivers

The most common USB 1.1 host controllers follow UHCI or OHCI specification and are supported by
the implemented drivers. However, it is not forbidden to use different host controllers that do not comply
(partially or at all) with those specifications, these would require a specific host controller drivers. This
chapter presents a simple how-to manual and uses EHCI host controller as an example.

14.1 EHCI

EHCI brings support for high speed signalling on USB bus. If the ability to mix USB 2 and USB 1.1 devices
on one bus is not required, it is fully possible to use USB 2 devices in the current state of USB support for
HelenOS, once EHCI driver is implemented.

14.2 DDF and initialization

A host controller device is usually a PCI device, thus it is necessary to know its assigned vendor and product
id. This device provides functionality for both host controller and root hub. EHCI shares status register and
interrupts between host controller and root hub, thus it will need to emulate USB hub and handle USB
requests using device register access. EHCI driver will need to initialize USB bus driver structures (us-
b_device_keeper_t and usb_endpoint_manager_t) as well as its local structures that can be
found in EHCI specification in chapter 3.

14.3 Root hub

Root hub function will be at the top of USB device hierarchy and it needs to implement usb_iface_t
interface. This interface is defined in <usb_iface.h> in libdrv. It consists of three functions:

• get_address is used to map device handle to assigned USB address, the root hub implementation will
have to access host controller structures directly or forward this call to the host controller function.

• get_interface is used by multi-interface devices and does not have to be implemented.

• get_hc_handle is used to gain direct access to the host controller. Root hub’s implementation should
return handle of its sibling function.
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14.4 USB bus driver back-end

Host controller interface is defined in <usbhc_iface.c> in libdrv. Functions in this interface can
be divided into two categories, the first one can be called USB bus driver back-end functions: * reque-
st_address is called when a new address for a new device is needed. * bind_address binds used
USB address to devman device handle. This connection is used by the driver to get its USB address and by
usb utilities to query devices based on drivers. * find_by_address provides information about device
address to driver mapping. * release_address returns address requested by request_address. It
may be caused by device initialization failure, or device unplugging.

All functions that manipulate addresses should be handled by usb_device_keeper_t in the EHCI
driver.

• register_endpoint registers pipe back-end.

• unregister_endpoint unregisters pipe back-end.

These two functions should be handled by usb_endpoint_manager_t. As there is no per endpoint
EHCI specific data structure, the driver does not need to add any special functionality to this calls.

14.5 Host controller data transfers

The other part of usbhc_iface_t interface handles data transfers:

• interrupt_out

• interrupt_in

• bulk_out

• bulk_in

• control_write

• control_read

All these functions are similar. They need to setup internal memory representation of the requested transfer
and enqueue this representation into internal schedule.

14.6 Functionality

Using EHCI driver implementation mentioned in this chapter it will be possible to use high speed devices.
It will not be possible use USB 1.1 devices connected to high speed hubs. This feature requires utilization
of Transaction Translation features and more extensive changes to the USB framework.
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Appendix A

User documentation

HelenOS USB subsystem brings support for USB devices into HelenOS, a micro-kernel multi-platform
operating system. This manual describes its capabilities and additional tools for the HelenOS user.

A.1 Supported platforms

Currently the HelenOS USB subsystem was tested on IA-32 and AMD-64 platforms. Any current PC
should be able to use it, unless its USB chip fails to meet USB requirements specified by USB specification.

A.2 How to get HelenOS

HelenOS can be downloaded either in form of source files or binaries. The easiest way to get HelenOS run
is to download binary for your platform from official HelenOS web site1 (in most cases in form of bootable
CD image) and depending on the form of the binary either use it as a machine image for target platform
emulator or write it on a compact disk and boot the system from the CD2.

A.3 Get the newest USB-development version

To ensure you have HelenOS with the latest version of USB subsystem, you may want to download source
files from repository of the project and compile them by yourself. It is recommended that you build the
project on Linux system, as many tools used to build the project are much harder to use in other systems’
environments.

First you need to download the sources from repository. For that you need to install a client for Bazaar, an
open-source distributed version control system. Then just type in the console

bzr branch bzr://helenos-usb.bzr.sourceforge.net/bzrroot/helenos-usb/ ←↩
mainline helenos_usb

for downloading branch of the HelenOS USB development team. This will download source files for whole
HelenOS into helenos_usb. After that, switch to the new directory and run make.

1http://www.helenos.org/
2Note, that at the time of writing this documentation the USB subsystem has not been merged into main HelenOS repository yet.

http://www.helenos.org/
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cd helenos_usb
make

A menu with build options will appear. Select preconfigured defaults for ia32 or amd64, disable SMP
support and confirm to start the build. After the build the helenos_usb will contain ISO image of
bootable CD with HelenOS image.iso.

A.4 Subsystem capabilities

Current version of HelenOS USB subsystem supports any USB 1.1 compliant device given that there is the
right device driver in the system and it does not require isochronous data transfers (those are used mostly
for multimedia devices, which are not supported in HelenOS). This includes USB hubs and human interface
devices such as mice or keyboards. Subsystem is also able to recognize most other USB devices. However,
without appropriate drivers for them it is not able to use them.

USB devices can be plugged at any time during the system run or even before. Most of them should be able
to gracefully recover from unplugging.

A.5 Tools

This chapter describes USB related command-line tools available for users of HelenOS.

A.5.1 List of attached devices and host controllers —lsusb

The only purpose of this tool is to list host controllers found on the current machine and list of USB devices
currently attached to them.

Unlike the original lsusb from Linux, this one does not aim to provide detailed information about attached
devices. You are supposed to use usbinfo [p. 74] instead.

Below is an example output from QEMU when three mass storage devices were attached to it.

Bus 01: /hw/pci0/00:01.2/uhci-hc
Device 01: /hw/pci0/00:01.2/uhci-rh/usb00_a1
Device 02: /hw/pci0/00:01.2/uhci-rh/usb01_a2
Device 03: /hw/pci0/00:01.2/uhci-rh/usb01_a2/usb00_a3
Device 04: /hw/pci0/00:01.2/uhci-rh/usb01_a2/usb01_a4

A.5.2 USB device information —usbinfo

This section describes how to use the usbinfo application available in HelenOS. This tool can be used
to query USB devices currently connected to the computer and was originally inspired by Linux lsusb
command.

The usbinfo is a tool primary for developers of USB device drivers. It prints rather low level information
about the device that is usually of little importance for end user. Below is a list of features provided by
usbinfo.

• report status of the devices

• print standard descriptors provided by the device
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• print all string descriptors

• list match ids describing the device

usbinfo is a command line tool and required actions are specified as switches.

A.5.2.1 Specifying the device

There are two options how to specify the device. First one is numerical, using bus number and device
address The second one uses the device’s hardware path.

If you want to use the numerical variant, you ought to know which bus number was assigned to the host
controller the device is attached to and what is the device address. You can get these from output of
lsusb [p. 74]. You then specify the device as host controller number, followed by period or colon
and by device address.

The hardware paths are listed in the /dev/devices directory. The only difference is that file entries
in the /dev/devices use backslashes as hardware components delimiter, while usbinfo expects nor-
mal forward slashes. Actually, the backslashes under /dev/devices are there only to bypass current
limitations of devmap.

For example, when HelenOS is run under QEMU with option -usbdevice mouse, following entries
will appear after issuing ls /dev/devices:

\hw\pci0\ctl
\hw\pci0\00:01.0\ctl
\hw\pci0\00:01.0\com1\a
\hw\pci0\00:01.2\uhci-hc
\hw\pci0\00:01.2\uhci-rh\usb00_a1\ctl
\hw\pci0\00:01.2\uhci-rh\usb00_a1\HID0\mouse

The last two entries represent the mouse and both can be used to retrieve the information about it.

More devices can be specified at the command line. The device specification (either through numbers or
through full path) is a ‘file’ option and thus is not preceded by any switch.

A.5.2.2 Specifying the actions

By default, usbinfo will print short device identification, printing code of the vendor and code of the
device.

This behavior can be altered via switches described in following paragraphs.

Short help can be printed with --help switch. This switch stops any further processing and no device is
queried at all.

The default device identification mentioned in the first paragraph can be forced with --identificat-
ion switch.

To see what match strings will be generated by hub when the device is connected, you shall use the ‘--
match-ids` switch. Although the creation of match ids is described formally elsewhere [p. 49], sometimes
it is easier to plug the device in and see `in natura’ what match ids will be generated.

Standard descriptor can be printed with --descriptor-tree switch. For detailed descriptor dump,
use --descriptor-tree-full.

To print string descriptors use --strings switch. The string dumping is very naive because it tries
to obtain first few strings regardless whether they are actually referenced. This could lead to retrieval of
invalid data. That is not an error of the device but rather rough approach of the usbinfo application.

The status of the device could be printed with --status switch.

Below is a short summary of available options together with their short variants.
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Long option Short option Option description

--help -h This summary.

--identification -i Short device identification
(default).

--match-ids -m Match ids.

--descriptor-tree -t Brief descriptor tree.

--descriptor-tree-full -T Detailed descriptor tree.

--strings -s String descriptors.

--status -S Device status.

Table A.1: Summary of usbinfo switches

A.5.3 Print out pressed multimedia keys —mkbd

This is a proof-of-concept application to demonstrate the capability of the HID driver to support multimedia
keys on keyboards and the interface the HID driver provides for other applications.

The mkbd application can communicate only with devices providing certain interface. The HelenOS USB
HID driver creates device nodes named hid for each HID device present in the system. Only these device
nodes can be used with mkbd. Moreover, only nodes created for the multimedia keys device will actually
report something.

It is a command line tool and takes exactly one argument — the path to the device you wish to monitor. The
path may be in format of the whole path to the device node under /dev/devices or in shortened form:
<bus_number>:<device_number>/rest/of/path.

After successful startup, the application will print out the Usages assigned to the pressed multimedia keys.
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Appendix B

Future development

Implementation of USB subsystem for HelenOS is a good base for further extension of HelenOS capabil-
ities. One of these capabilities may be the support for USB 2 host controllers and devices. Its possible
implementation is discussed in section USB 2.0 [p. 78] below. Other fields of future development include
additional drivers, support for isochronous transfers (multimedia devices), power management or support
for alternate configuration and interfaces.

B.1 Support for device unplugging

The device driver framework does not provide functionality for handling device unplugging. The USB
drivers are almost ready when such support would be added.

The drivers use a heuristics that several consecutive failed attempts for communication with them means
the device was removed by a user. The driver then tries to free all allocated resources.

Obviously, changes to the drivers would need to be made once the unplugging support is available. For most
of the drivers, the changes would be rather trivial. Host controllers are not expected to be hot-pluggable
devices and support for device unplug is not necessary.

B.2 New device drivers and support for isochronous transfers

There are many drivers that can be implemented such as driver for mass storage devices. It was the goal of
the project — to create a robust platform for writing USB device drivers.

USB subsystem currently lacks support for isochronous transfers. These are multimedia transfers and there
is no multimedia support in HelenOS. Thus the feature was not implemented as there was no suitable way
to test it.

Implementation of this feature should include

1. Framework for shared memory buffers between tasks with focus on multimedia data.

2. At least one driver that would use isochronous transfers and the multimedia framework for data
transfers

3. A simple application that would be able to use data flow from or to a device using isochronous
transfers

The implementation would require changes to the current USB transfer scheduler. Current schedulers are
not ready for time critical transfers and such needs are ignored.
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B.3 Power management

Another field of future development is implementation of power management. HelenOS currently lacks any
power management features. If it is implemented, it will suspend or resume particular USB devices or a
whole USB device tree at once.

Suspending a device from power management task would require it to obtain device’s parent handle in the
DDF tree and ask the parent to suspend/resume the device. Hub driver and UHCI root hub driver would
implement a call to suspend/resume a specified device. They would also handle ‘suspended status’ port
change — this is not implemented as currently there is no way a device could be suspended.

HCD is responsible for suspending entire bus and all connected devices. Implementation would require a
suspend and resume call for HCD as well as implementation of these commands in HCD.

B.4 Alternate configurations and interfaces settings

Support for more device configurations is not present at all (because hardware vendors do not use this
feature much) but adding it is possible. The following changes would have to be done:

1. Support for device unplugging. It is necessary that the drivers can give up the control of the device
because the other configuration may provide completely different set of interfaces.

2. Adding tools to allow user to select alternate configuration.

3. Changing the hub driver (and possibly MID driver, too) to support configuration switch.

Support for alternate interfaces is implemented but was not tested. The framework always chooses the first
setting and support for interface switching would involve following changes:

1. Possibly add logic to switch interface automatically to the respective drivers according to properties
in each of the settings.

2. Adding tool to switch the interface. This tool would need to work at interface level.

3. Minimal support for device unplugging because interface change might involve destruction of exist-
ing DDF functions and creating new ones.

4. Fix possible problems in existing implementation of interface switching.

B.5 USB 2.0

This section focuses on USB 2 and its influence on USB 1.1 drivers implementation. It discusses features
of USB 2 enabled hosts that need to be considered by OS drivers developers.

B.5.1 Backwards compatibility

Both USB 2 hosts and devices are designed to be backwards compatible with USB 1.1. High speed devices
(USB 2) must be able to communicate at full speed and full speed mode is the default. Special handshake
is used during reset stage of device enumeration to determine whether a device is high speed capable. From
the host’s perspective, USB 2 controller (defined by Enhanced Host Controller Interface — EHCI) provides
a separate bus and backwards compatibility is achieved by sharing root hub ports with USB 1.1 controllers,
so called companion controllers (using USB 1.1 devices connected to other than root hub, uses transaction
translation capabilities of high speed hubs and is beyond the scope of this text).
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If an EHCI controller is configured, all ports are controlled by its driver. In the case of low speed devices,
or full speed devices that fail to respond to high speed identification sequence, the port control is released
to one of the companion controllers.

B.5.2 BIOS and OS control

USB 1.1 defined a legacy support for USB mice and keyboards and USB 2 extended this idea to so called
Pre-OS USB control. It is used to support USB devices before an OS starts, like booting from USB dongle.
EHCI specifies semaphores and a routine for graceful handover of hardware control from BIOS/firmware to
the OS. If the OS is not aware of USB 2 functionality this control stays with BIOS and may cause problems
(there may be a BIOS setting controlling this feature).

Therefore, a STUB driver in uspace/drv/ehci-hcd for EHCI controllers is provided. This driver
recognizes EHCI host controllers and gains control from any pre-OS software in pci_disable_lega-
cy. It turns off any USB 2 host controller found, releasing control of its root hub ports to companion USB
1.1 host controllers.



80 USB subsystem in HelenOS

Appendix C

Project timeline

This appendix sums up the realization of the project in a chronological order.

August 2010 Getting to know HelenOS. First experiments with writing code for HelenOS.
Setting up tools for project (Trac, Bazaar repository, mailing-list, calendar).

September —
October 2010

Study of USB and USB HID specifications. Virtual host controller driver
implemented. First draft of project architecture.

11th November
2010

Official start of the project.

November 2010 Modifying architecture in order to use the new Device Driver Framework.
First draft of USB framework.

December 2010 First drafts of HC driver, hub driver and keyboard driver.

January 2011 Hub driver implemented. First draft of HID report parser. basic UHCI driver
and UHCI root hub driver implemented.

4th February 2011 Prototype of the project completed, only basic features supported.

February 2011 New version of the USB driver API, porting the existing code to it Modifying
code to reflect changes in DDF. Driver for multi-interface devices. Completed
support of standard keyboards.

March 2011 Testing with real hardware. Started documenting the project. Basic HID
descriptor parser and basic generic HID report parser Support for generic
(non-boot) reports in HID driver.

April 2011 OHCI driver implemented. Improving HID parser. Mass storage driver stub.
EHCI driver stub. Subdrivers in HID driver. Testing with real hardware,
debugging.

May 2011 Reorganization of libraries. Testing with real hardware, debugging. Tools
implemented (lsusb, usbinfo, mkbd). Finished documentation.
Presentation for other HelenOS developers.

2nd June 2011 Project delivered.
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